PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 6A | A-191-A-197
Article title

Processing, Microstructure and Dielectric Properties of the Bi_5Ti_3FeO_{15} Ceramic

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the present work is the analysis of microstructure, dielectric permittivity and thermal properties analysis of Bi_5Ti_3FeO_{15} ceramics obtained by two methods. The studied Bi_5Ti_3FeO_{15} ceramics were prepared by conventional synthesis and hot uniaxial pressing reaction from the conventional mixture of oxides, viz. TiO_2, Fe_2O_3, Bi_2O_3. The studied material has layered perovskite like structures, first described by Aurivillius in 1949 and Subbaro in 1969. The ceramic Bi_5Ti_3FeO_{15} is known to contain a series of compounds with the general formula: Bi_{m+1}Fe_{m-3}Ti_3O_{3m+3}. The X-ray diffraction methods were used for qualitative phase analysis of studied samples. The morphology was analyzed by scanning electron microscopy method. The thermal properties of the studied materials were measured using the differential thermal analysis at a constant heating rate of 15 K/min under an argon protective atmosphere. Thermal dependence of dielectric permittivity was studied between room temperature and 1137 K.
Keywords
Contributors
author
  • Department of Material Science, Faculty of Computer Science and Material Science, University of Silesia, Żeromskiego 3, 41-200 Sosnowiec, Poland
author
  • Institute of Material Science, University of Silesia, Bankowa 12, 40-007 Katowice, Poland
author
  • Department of Material Science, Faculty of Computer Science and Material Science, University of Silesia, Żeromskiego 3, 41-200 Sosnowiec, Poland
References
  • 1. N.A. Lomanova, M.I. Morozov, V.L. Ugolkov, V.V. Gusarov, Inorg. Mater. 42, 18995 (2006)
  • 2. B. Aurivillius, Ark. Kemi. 1, 463 (1949)
  • 3. E.C. Subbaro, J. Phys. Chem. Solids 23, 665 (1977)
  • 4. E.C. Subbaro, Phys. Rev. 122, 804 (1961)
  • 5. E.C. Subbaro, J. Am. Ceram. Soc. 45, 166 (1962)
  • 6. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Fiz. Tverd. Tela 1, 169 (1959)
  • 7. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, Fiz. Tverd. Tela 3, 896 (1963)
  • 8. H. Schmid, Ferroelectrics 162, 317 (1994)
  • 9. A.R. James, G.S. Kumar, M. Kumar, S.V. Suryanarayana, T. Bhimasankaram, Mod. Phys. Lett. B 11, 633 (1997)
  • 10. M. Kumar, A. Srinivas, G.S. Kumar, S.V. Suryanarayana, Solid State Commun. 104, 741 (1997)
  • 11. J.A. Deverin, Ferroelectrics 19, 9 (1978)
  • 12. M. Plonska, Z. Surowiak, Mol. Quant. Acoust. 27, 207 (2006)
  • 13. J. Rymarczyk, D. Machura, J. Ilczuk, Eur. Phys. J., to be published
  • 14. J. Ilczuk, D. Machura, J. Rymarczyk, Mol. Quant. Acoust. 28, 107 (2007)
  • 15. A. Srinivas, D.W. Kim, K.S. Hong, S.V. Suryanarayana, Mater. Res. Bull. 39, 55 (2004)
  • 16. M. Plonska, Z. Surowiak, Mol. Quant. Acoust. 28, 253 (2007)
  • 17. C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, P. Lightfoot, J. Solid State Chem. 164, 280 (2002)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n6a31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.