Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 6 | 1707-1713
Article title

Early Design Stage of the MsAa-4 Mössbauer Spectrometer

Title variants
Languages of publication
Entirely new Mössbauer spectrometer MsAa-4 is currently under design and construction. New features as compared to the basic features of the previous generation MsAa-3 spectrometer could be summarized as follows. Completely digital processing of the γ-ray detector signal beyond the Gaussian shape filter/amplifier is to be implemented. The spectrometer is going to be able to accommodate external multiple detector heads. One could collect simultaneously up to 128 γ-ray spectra in 16384 channels of 32-bit each and up to 512 Mössbauer spectra in 4096 channels of 32-bit each provided the proper external multiple detector head is used. The count-rate per single detector is limited to about 10^5 counts per second total. Improved precision of the reference function from 12-bit to 16-bit is to be provided. The reference function is stored in 8192 channels per complete cycle. Addition of the random noise to the reference corner prism of the Michelson-Morley calibration inteferometer is to be introduced to avoid spurious fringes due to the phase lock-up. Integrated universal temperature controller being able to use variety of the temperature sensors is to be interconnected with the proper spectrometer. The spectrometer is now a stand-alone network device as it is equipped with the Ethernet connection to the outside world. Modular design and use of the strict standards allows easy reconfiguration for other applications than the Mössbauer spectroscopy.
  • Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Podchorążych 2, PL-30-084 Kraków, Poland
  • Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Podchorążych 2, PL-30-084 Kraków, Poland
  • Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 21, PL-30-059 Kraków, Poland
  • RENON, Gliniana 15/15, PL-30-732 Kraków, Poland
  • 1. M. Benedetti, D.R. Fernandez, Rev. Sci. Instrum. 52, 1406 (1981)
  • 2. G. Faigel, P.E. Haustein, D.P. Siddons, Nucl. Instrum. Methods Phys. Res. B 17, 363 (1986)
  • 3. F.A. Theopold, E. Gerdau, R. Hollatz, R. Rüffer, R. van Staa, Hyperfine Interact. 29, 1555 (1986)
  • 4. S. Grogan, J. Thornhill, Nucl. Instrum. Methods Phys. Res. A 256, 525 (1987)
  • 5. E.C. Pitzen, J. Jing, U. Gonser, Nucl. Instrum. Methods Phys. Res. B 31, 487 (1988)
  • 6. F. Cavatorta, A. Deriu, C. Schiaretti, Hyperfine Interact. 46, 715 (1989)
  • 7. F.W.D. Woodhams, S.M. Reeder, Meas. Sci. Technol. 2, 217 (1991)
  • 8. M. Kwater, M. Pochroń, K. Ruebenbauer, T. Terlecki, U.D. Wdowik, R. Górnicki, Acta Phys. Slov. 45, 81 (1995)
  • 9. R. Górnicki, A. Błachowski, K. Ruebenbauer, Nukleonika 52, S7 (2007); see also:
  • 10. M. Kwater, Hyperfine Interact. 116, 53 (1998)
  • 11. M. Kwater, K. Ruebenbauer, U.D. Wdowik, Mol. Phys. Rep. 22, 73 (1998)
  • 12. M. Kwater, K. Ruebenbauer, U.D. Wdowik, in: Mössbauer Spectroscopy in Materials Science, Eds. M. Miglierini, D. Petridis, Kluwer Academic Publishers, London 1999, p. 407
  • 13. G. Klinhelhöfer, B. Bernhardt, J. Foh, U. Bonnes, D. Rodionov, P.A. de Souza, Ch. Schröder, R. Gellert, S. Kane, P. Gütlich, E. Kankeleit, Hyperfine Interact. 144, 371 (2002)
  • 14. K. Ruebenbauer, T. Birchall, Hyperfine Interact. 7, 125 (1979); see also:
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.