EN
In this paper the structural and Mössbauer spectral properties of multiferroic ceramic Bi_5Ti_3FeO_{15} powders prepared by high-energy ball milling of polycrystalline precursor material (mixture of Bi_2O_3, TiO_2 and Fe_2O_3 powders) are presented. Mechanical synthesis was performed by high-energy vibratory mill. The X-ray diffraction methods were applied for the structure characterization of the studied samples. The parameters of diffraction line profiles were determined by PRO-FIT Toraya procedure. The crystallite sizes and lattice distortions were analyzed using the Williamson-Hall method. Investigations of hyperfine interactions in the studied materials were carried out by the Mössbauer spectroscopy. The powder morphology was analyzed by scanning electron microscopy and transmission electron microscopy techniques. It was found that during high-energy milling phase transitions, a decrease in crystallite size and amorphization process are observed.