Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 5 | 1173-1178

Article title

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we observed effects of changing the electron concentration and electron mobility upon the poling of the Cd_{0.96}Zn_{0.04}Te ferroelectric gate deposited on the top of the CdTe-based modulation doped quantum well structure, which are confirmation of the existence of the electrostatic field originating from the ferroelectric material, which can be controlled by an external voltage. The analysis of the data obtained from the Hall effect measurements showed that the electron mobility and carrier concentration decreased by a factor of 2.5 and 1.5, respectively upon the negative poling of the gate with respect to the poled by the positive voltage. Moreover, the electrostatic field, depending on its directions, causes depletion of accumulation of electrons in the 2D channel, i.e., it is a source of the field effect.

Keywords

Contributors

author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

References

  • 1. S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Science 276, 238 (1997)
  • 2. I. Stolichnov, L. Malin, P. Muralt, N. Setter, Appl. Phys. Lett. 88, 43512 (2006)
  • 3. H. Ishiwara, Ferroelectric Random Access Memories. Fundamentals and Applications Topics in Applied Physics, Vol. 93, Springer-Verlag, Berlin 2004
  • 4. J.F. Scott, Ferroelectric Memories, Springer Verlag, Berlin 2000
  • 5. Y. Hotta, E. Rokuta, H. Tabata, H. Kobayashi, T. Kawai, Appl. Phys. Lett. 78, 3283 (2001)
  • 6. N.G. Subramanian, J.C. Lee, T.W. Kang, Appl. Phys. Lett. 87, 212907 (2005)
  • 7. R. Weil, R. Nkum, E. Muranevich, L. Benguigui, Phys. Rev. Lett. 62, 2744 (1989)
  • 8. D.J. Fu, J.C. Lee, S.W. Choi, S.J. Lee, T.W. Kang, M.S. Jang, H.I. Lee, Y.D. Woo, Appl. Phys. Lett. 81, 5207 (2002)
  • 9. T. Wojciechowski, E. Janik, E. Dynowska, K. Fronc, G. Karczewski, Phys. Status Solidi C 3, 1197 (2006)
  • 10. T. Wojciechowski, P. Jakubas, P. Bogusławski, G. Karczewski, accepted for publication in J. Korean Phys. Soc
  • 11. I. Stolichnov, E. Colla, N. Setter, T. Wojciechowski, E. Janik, G. Karczewski, Phys. Rev. Lett. 97, 247601 (2006)
  • 12. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv114n526kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.