Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 919-923

Article title

Evolution of InAs Quantum Dots during Annealing Process

Content

Title variants

Languages of publication

EN

Abstracts

EN
InAs quantum dots were grown by molecular beam epitaxy in the Stranski-Krastanow growth mode and annealed under N_2 atmospheres at different temperatures. The evolution of quantum dots with the annealing temperature increasing were slightly different with the results reported in the literature. Atomic force microscopy investigations of quantum dots uncapped layer show a size initial increase followed by a prompt decrease as annealing temperature increases. It was found that the photoluminescence signal on quantum dots capped with GaAs layer was first slightly red-shifted and then blue-shifted with an increase in annealing temperature. The blue-shift can be attributed to In/Ga interdiffusion in annealing process. Red-shift of optical features indicates the change of the quantum dots compostion, size, and strain from the barrier.

Keywords

EN

Year

Volume

114

Issue

4

Pages

919-923

Physical description

Dates

published
2008-10
received
2008-05-05
(unknown)
2008-07-04

Contributors

author
  • Tianjin Institute of Urban Construction, Tianjin 300384, China
  • The Key Lab of Advanced Technique and Fabrication, for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 30047, China
author
  • The Key Lab of Advanced Technique and Fabrication, for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 30047, China
author
  • The Key Lab of Advanced Technique and Fabrication, for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 30047, China
author
  • The Key Lab of Advanced Technique and Fabrication, for Weak-Light Nonlinear Photonics Materials, Ministry of Education, TEDA Applied Physics School, Nankai University, Tianjin 30047, China

References

  • 1. H.K. Yong, S.P. Jin, H.L. Uk, C.H. Song, Appl. Phys. Lett. 82, 1099 (2003)
  • 2. O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe, Appl. Phys. Lett. 77, 466 (2000)
  • 3. I. Mukhametzhanov, Z. Wei, R. Heitz, A. Madhukar, Appl. Phys. Lett. 75, 85 (1999)
  • 4. X.C. Wang, S.J. Xu, S.J. Chua, Z.H. Zhang, J. Appl. Phys. 86, 2687 (1999)
  • 5. H.S. Lee, J.Y. Lee, T.W. Kim, M.D. Kim, J. Appl. Phys. 94, 6354 (2003)
  • 6. Jin Soo Kim, Jin Hong Lee, Sung Ui Hong, Won Seok Han, Ho-Sang Kwack, Jong Hee Kim, Dae Kon Oh, J. Appl. Phys. 94, 2486 (2003)
  • 7. E.C. Le Ru, J. Fack, R. Murray, Phys. Rev. B 67, 245318 (2003)
  • 8. A.O. Kosogov, P. Werner, U. Gösele, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, P.S. Kop'ev, N.A. Bert, Zh.I. Alferov, Appl. Phys. Lett. 69, 3072 (1996)
  • 9. C.T. Foxon, B.A. Joyce, J. Cryst. Growth. 44, 75 (1978)
  • 10. D. Leonard, M. Krishnamurthy, S. Fafard, J.L. Merz, P.M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994)
  • 11. Y. Chen, J. Washburn, Phys. Rev. Lett. 77, 4046 (1996)
  • 12. Jin Soo Kim, Jin Hong Lee, Sung Ui Hong, Won Seok Han, Ho-Sang Kwack, Jong Hee Kim, Dae Kon Oh, J. Appl. Phys. 94, 2486 (2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv114n426kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.