Skip to main menu
Scroll to content
PL
|
EN
Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit
https://bibliotekanauki.pl
Search
Browse
About
test
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Author-Date)
Harvard
ACS
ACS (no art. title)
IEEE
Preferences
Polski
English
Language
enabled
[disable]
Abstract
10
20
50
100
Number of results
Tools
PL
EN
BibTeX
PN-ISO 690:2012
Chicago
Chicago (Author-Date)
Harvard
ACS
ACS (no art. title)
IEEE
Link to site
Copy
Journal
Acta Physica Polonica A
2008
|
114
|
4
| 913-918
Article title
Analytic Approximations for Thomas-Fermi Equation
Authors
A. El-Nahhas
Content
Full texts:
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we give an analytic approximation to the solution of the Thomas-Fermi equation using the homotopy analysis method and with the use of a polynomial exponential basis.
Keywords
EN
02.30.Hq
02.30.Mv
02.60.Lj
21.10.Ft
31.15.-p
Discipline
31.15.-p: Calculations and mathematical techniques in atomic and molecular physics(see also 02.70.-c Computational techniques, in mathematical methods in physics)
21.10.Ft: Charge distribution
02.30.Mv: Approximations and expansions
02.60.Lj: Ordinary and partial differential equations; boundary value problems
02.30.Hq: Ordinary differential equations
Publisher
Institute of Physics, Polish Academy of Sciences
Journal
Acta Physica Polonica A
Year
2008
Volume
114
Issue
4
Pages
913-918
Physical description
Dates
published
2008-10
received
2008-02-12
(unknown)
2008-03-28
(unknown)
2008-04-29
Contributors
author
A. El-Nahhas
Department of Mathematics, Helwan Faculty of Science, Helwan, Egypt
References
1. E. Fermi, Rend. Accad. Naz. del Lincei, Cl. Sci. Fis., Mat. E. Nat. 6, 602 (1927)
2. L.H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927)
3. M. Allan, Comp. Phys. Commun., 67, 389 (1992)
4. B.L. Burrows, P.W. Core, Quart. Appl. Math. 42, 73 (1984)
5. V. Bush, S.H. Caldwell, Phys. Rev. 38, 1898 (1931)
6. C.Y. Chan, S.W. Du, Quart. Appl. Math. 44, 303 (1986)
7. C.Y. Chan, Y.C. Hon, Quart. Appl. Math. 45, 591 (1987)
8. F. Civan, C.M. Sliepcevich, J. Comput. Phys. 56, 343 (1984)
9. Y.C. Hon, SEA Bull. Math. 20, 55 (1996)
10. B.J. Laurenzi, J. Math. Phys. 31, 2535 (1990)
11. C.D. Luning, W.L. Perry, Quart. Appl. Math. 35, 257 (1977)
12. K.A. Milton, C.M. Bender, S.S. Pinsky, J. Math. Phys. 30, 1447 (1989)
13. G.J. Pert, J. Phys. B 32, 5067 (1999)
14. S.N. Venkatarangan, K. Rajalashmi, Comput. Math. Appl. 29, 75 (1995)
15. A.M. Wazwaz, Math. Comput. 105, 11 (1999)
16. M.S. Wu, Phys. Rev. A 26, 57 (1982)
17. S.J. Liao, Ph.D. Thesis, Shanghai Jiao Tong University, 1992
18. S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman&Hall/CRC Press, Boca Raton 2003
19. J.D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publ. Co., Waltham (MA) 1968
20. A.H. Nayfeh, Perturbation Methods, Wiley, New York 2000
21. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publ., Boston 1994
22. S.J. Liao, Appl. Math. Comput. 144, 495 (2003)
23. S. Kobayashi, T. Matsukuma, S. Nagai, K. Umeda, J. Phys. Soc. Jpn. 10, 759 (1955)
Document Type
Publication order reference
Identifiers
DOI
10.12693/APhysPolA.114.913
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n425kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.