PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 819-834
Article title

Spatiotemporal Transport Processes in Semiconductor Gas Discharge Structure with GaAs Photodetector

Content
Title variants
Languages of publication
EN
Abstracts
EN
In a semiconductor gas discharge structure with diameters much larger than an inter-electrode distance, the effects of different parameters (i.e. electrode separation, gas pressure, diameter of the GaAs photodetector, etc.) on electrical breakdown and current oscillations were studied. Non-stationary and non-homogeneous states are generated in the structure, through the spatially uniform irradiation of the semiconductor photodetector. Instabilities occur due to the nonlinear features of the semiconductor photocathode, while the gas discharge serves to visualize transport processes in GaAs. Spatiotemporal variations of current and discharge light emissions are studied with the above-mentioned control parameters. Transformation of the profile and amplitude of the current densities of the filaments in different regions of the current-voltage characteristic are widely studied. Instabilities of spatially non-uniform distributions resulting in the formation of multiple current filaments with increasing voltages above the critical values are observed. A semiconductor gas discharge structure with an N-shaped current-voltage characteristic is analyzed via both the current and discharge light emissions data which shows the electrical instability in the GaAs photodetector.
Keywords
EN
Publisher

Year
Volume
114
Issue
4
Pages
819-834
Physical description
Dates
published
2008-10
received
2007-09-07
(unknown)
2008-04-15
(unknown)
2008-05-07
Contributors
  • Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Teknikokullar, Turkey
author
  • Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Teknikokullar, Turkey
  • Institute of Physics, National Academy of Science, Baku 370143, Azerbaijan
References
  • 1. L.M. Portsel, Y.A. Astrov, I. Reimann, E. Ammelt, H. Purwins, J. Appl. Phys. 85, 3960 (1999)
  • 2. A.Kh. Zeinally, N.N. Lebedeva, L.G. Paritskii, B.G. Salamov, J. Photogr. Sci. 39, 114 (1991)
  • 3. N.N. Lebedeva, B.G. Salamov, V.I. Orbukh, V.M. Nagiev, Instrum. Exp. Tech. 37, 642 (1994)
  • 4. Y.P. Rayzer, Gas Discharge Physics, Springer, Berlin 1991, p. 126
  • 5. H. Haken, Synergetics, Springer, Berlin 1978
  • 6. A.V. Gorbatyuk, P.B. Rodin, Z. Phys. B, Condens. Matter 104, 45 (1997)
  • 7. B.G. Salamov, Y. Ciftci, K. Colakoglu, IEEE Trans. Plasma Sci. 32, 2093 (2004)
  • 8. G.L. Lippi, P.A. Porta, L.M. Hoffer, H. Grassi, Phys. Rev. E 59, R32 (1999)
  • 9. Proc. 4th Int. Workshop on GaAs Detectors and Related Compounds, Eds. S. d'Auria, K.M. Smith, Nucl. Instrum. Methods Phys. Res. A 395, 1 (1997)
  • 10. A. Cola, L. Reggiani, L. Vasanelli, Semicond. Sci. Technol. 12, 1358 (1997)
  • 11. K. Berwick, M.R. Brozel, C.M. Buttar, M. Cowperthwaite, P. Sellin, Y. Hou, Mater. Sci. Eng. 28, 485 (1994)
  • 12. M. Kiyama, M. Yamada, M. Tatsumi, Eur. Phys. J. Appl. Phys. 27, 185 (2004)
  • 13. H.C. Ellin, A. Grunnet-Jepsen, L. Solymar, Appl. Phys. Lett. 65, 353 (1994)
  • 14. A. Neumann, J. Appl. Phys. 90, 15 (2001)
  • 15. H. Rajbenbach, J.M. Verdiell, J.P. Huignard, Appl. Phys. Lett. 53, 541 (1988)
  • 16. H.Y. Kurt, B.G. Salamov, T.S. Mammadov, Cryst. Res. Technol. 40, 1160 (2005)
  • 17. O. Godoy-Cabrera, J.S. Benitez-Read, R. Lopezcallejas, J. Pacheco-Sotelo, Int. J. Electron. 87, 361 (2000)
  • 18. B.G. Salamov, K. Çolakouğlu, Ş. Altindal, Infrared Phys. Technol. 36, 661 (1995)
  • 19. B.G. Salamov, S. Buyukakkas, M. Ozer, K. Colakoglu, Eur. Phys. J. Appl. Phys. 2, 275 (1998)
  • 20. R.S. Dhariwal, J.M. Torres, M.P.Y. Desmulliez, IEE Proceedings-Sci. Measurement Technol. 147, 261 (2000)
  • 21. H.Y. Kurt, B.G. Salamov, J. Phys. D, Appl. Phys. 36, 1987 (2003)
  • 22. V.N. Melekhin, N.Yu. Naumov, Sov. Phys.-Tech. Phys. 29, 888 (1984)
  • 23. N.N. Lebedeva, B.G. Salamov, B.G. Akinoglu, K.R. Allakhverdiev, J. Phys. D, Appl. Phys. 27, 1229 (1994)
  • 24. M.A. Guisinow, R.A. Gerber, J.B. Gerardo, Phys. Rev. Lett. 25, 1248 (1970)
  • 25. Ch. Radehaus, T. Dirksmeyer, H. Willebrand, H.G. Purwins, Phys. Lett. A 125, 92 (1987)
  • 26. H. Willebrand, T. Hunteler, F. Niedernostheide, R. Dohmen, H.G. Purwins, Phys. Rev. A 45, 8766 (1992)
  • 27. Y.P. Rayzer, Gas Discharge Physics, Nauka, Moscow 1987, p. 360 (in Russian)
  • 28. F. Piazza, P.C.M. Christianen, J.C. Maan, Phys. Rev. B 55, 15591 (1997)
  • 29. B.G. Salamov, K. Çolakouğlu, Ş. Altindal, M Özer, J. Phys. III 7, 927 (1997)
  • 30. N.N. Lebedeva, V.I. Orbukh, B.G. Salamov, J. Phys. III France 6, 797 (1996)
  • 31. Y.A. Astrov, H.G. Purwins, Tech. Phys. Lett. 28, 910 (2002)
  • 32. E.L. Gurevich, A.S. Moskalenko, A.L. Zanin, Y.A. Astrov, H.G. Purwins, Phys. Lett. A 307, 299 (2003)
  • 33. L.D. Tsendin, Encyclopedia of Low-Temperature Plasma, Nauka, Moscow 2000, p. 16
  • 34. V.M. Marchenko, S. Matern, H.G. Purwins, Y.A. Astrov, L.M. Portsel, Proc. SPIE 1, 4669 (2002)
  • 35. B.G. Salamov, S. Altindal, M. Ozer, K. Colakoglu, E. Bulur, Eur. Phys. J. Appl. Phys. 2, 267 (1998)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n417kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.