Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 807-818

Article title

Analytic Equation of State and Thermodynamic Properties, for α-, β-, and γ-Si₃N₄ Based on Analytic Mean Field Approach

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The analytic mean field potential approach is applied to α-, β-, and γ-Si₃N₄. The analytic expressions for the Helmholtz free energy, internal energy, and equation of state were derived. The formalism for the case of the Morse potential is used in this work. Its six potential parameters are determined through fitting the compression experimental data of α-, β-, and γ-Si₃N₄. The calculated compression curves of α-, β-, and γ-Si₃N₄ are in good agreement with the available experimental data. This suggests that the analytic mean field potential approach is a very useful approach to study the thermodynamic properties of Si₃N₄. Furthermore, we predict the variation of the free energy and internal energy with the molar volume at several higher temperatures and calculate the temperature dependence of the molar volume, bulk modulus, thermal expansion coefficient and isochoric heat capacity at zero pressure.

Keywords

EN

Contributors

author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China

References

  • 1. R. Grűn, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 800 (1979)
  • 2. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, R. Boehler, Nature (London) 400, 340 (1999)
  • 3. R.J. Brook, Nature (London) 400, 312 (1999)
  • 4. I. Tanaka, F. Oba, T. Sekine, E. Ito, A. Kuba, K. Tastumi, H. Adach, T. Yamamoto, J. Mater. Res. 17, 731 (2002)
  • 5. A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, R. Riedel, J. Am. Ceram. Soc. 85, 86 (2002)
  • 6. J.Z. Jiang, F. Kragh, D.J. Frost, K. Stahl, H. Lindelov, J. Phys., Condens. Matter 13, L515 (2001)
  • 7. F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)
  • 8. M.B. Kruger, J.H. Nguyen, Y.M. Li, W.A. Caldwell, M.H. Manghnani, R. Jeanloz, Phys. Rev. B 55, 3456 (1997)
  • 9. J.Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J.M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, D.J. Frost, Phys. Rev. B 65, 161202 (2002)
  • 10. W. Paszkowicz, R. Minikayev, P. Piszora, M. Knapp, C. Bähtz, J.M. Recio, M. Marqués, P. Mori-Sánchez, L. Gerward, J.Z. Jiang, Phys. Rev. B 69, 052103 (2004)
  • 11. K. Kato, I. Inoue, K. Kijima, I. Kawada, H. Tananka, T. Yamane, J. Am. Ceram. Soc. 58, 90 (1975)
  • 12. R.J. Bruls, H.T. Hintzen, G. de With, R. Metselaar, J.C. van Miltenburg, J. Phys. Chem. Solids 62, 783 (2001)
  • 13. L. Cartz, J.D. Jorgensen, J. Appl. Phys. 52, 236 (1981)
  • 14. E. Soignard, M. Somayazulu, J.J. Dong, O.F. Sankey, P.E. McMillan, J. Phys., Condens. Matter 13, 557 (2001)
  • 15. W.Y. Ching, L. Ouyang, J.D. Gale, Phys. Rev. B 61, 8696 (2000)
  • 16. R. Belkada, T. Shibayanagi, M. Naka, J. Am. Ceram. Soc. 83, 2449 (2000)
  • 17. S. Ogata, N. Hirosaki, C. Kocer, H. Kitagawa, Phys. Rev. B 64, 172102 (2001)
  • 18. C.M. Fang, G.A. de Wijs, H.T. Hintzen, G.J. de With, J. Appl. Phys. 93, 5175 (2003)
  • 19. Y. Wang, D. Chen, X. Zhang, Phys. Rev. Lett. 84, 3220 (2000)
  • 20. Y. Wang, Phys. Rev. B 62, 196 (2000)
  • 21. Y. Wang, Phys. Rev. B 63, 245108 (2001)
  • 22. Y. Wang, R. Ahuja, B. Johansson, Phys. Rev. B 65, 014104 (2001)
  • 23. N.K. Bhatt, A.R. Jani, P.R. Vyas, V.B. Gohel, Physica B 65, 014104 (2001)
  • 24. N.K. Bhatt, P.R. Vyas, A.R. Jani, V.B. Gohel, J. Phys. Chem. Solids 66, 797 (2005)
  • 25. J.X. Sun, L.C. Cai, Q. Wu, F.Q. Jing, Phys. Rev. B 71, 024107 (2005)
  • 26. L.A. Girifalco, J. Phys. Chem. 96, 858 (1992)
  • 27. J.X. Sun, Physica B 34, 381 (2006)
  • 28. M.C. Abramo, C. Caccamo, J. Phys. Chem. Solids 57, 1751 (1996)
  • 29. M.C. Abramo, C. Caccamo, D. Costa, G. Pellicane, R. Ruberto, Phys. Rev. E 69, 031112 (2004)
  • 30. V.I. Zubov, N.P. Tretiakov, J.F. Sanchez, A.A. Caparica, Phys. Rev. B 53, 12080 (1996)
  • 31. V.I. Zubov, J.F. Sanchez-Ortiz, N.P. Tretiakov, I.V. Zubov, Phys. Rev. B 55, 6747 (1997)
  • 32. Z.W. Salsburg, W.W. Wood, J. Chem. Phys. 37, 798 (1962)
  • 33. F.H. Ree, A.C. Holt, Phys. Rev. B 8, 826 (1973)
  • 34. K. Westera, E.R. Cowley, Phys. Rev. B 11, 4008 (1975)
  • 35. E.R. Cowley, J. Gross, Zhaoxin Gong, G.K. Horton, Phys. Rev. B 42, 3135 (1990)
  • 36. A.C. Holt, M. Ross, Phys. Rev. B 1, 2700 (1970)
  • 37. E. Wasserman, L. Stixrude, Phys. Rev. B 53, 8296 (1996)
  • 38. J.X. Sun, H.C. Yang, Q. Wu, L.C. Cai, J. Phys. Chem. Solids 63, 113 (2002)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv114n416kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.