PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 807-818
Article title

Analytic Equation of State and Thermodynamic Properties, for α-, β-, and γ-Si₃N₄ Based on Analytic Mean Field Approach

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The analytic mean field potential approach is applied to α-, β-, and γ-Si₃N₄. The analytic expressions for the Helmholtz free energy, internal energy, and equation of state were derived. The formalism for the case of the Morse potential is used in this work. Its six potential parameters are determined through fitting the compression experimental data of α-, β-, and γ-Si₃N₄. The calculated compression curves of α-, β-, and γ-Si₃N₄ are in good agreement with the available experimental data. This suggests that the analytic mean field potential approach is a very useful approach to study the thermodynamic properties of Si₃N₄. Furthermore, we predict the variation of the free energy and internal energy with the molar volume at several higher temperatures and calculate the temperature dependence of the molar volume, bulk modulus, thermal expansion coefficient and isochoric heat capacity at zero pressure.
Keywords
EN
Publisher

Year
Volume
114
Issue
4
Pages
807-818
Physical description
Dates
published
2008-10
received
2008-01-07
(unknown)
2008-04-15
(unknown)
2008-05-19
Contributors
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
author
  • Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054, P.R. China
References
  • 1. R. Grűn, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 35, 800 (1979)
  • 2. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, R. Boehler, Nature (London) 400, 340 (1999)
  • 3. R.J. Brook, Nature (London) 400, 312 (1999)
  • 4. I. Tanaka, F. Oba, T. Sekine, E. Ito, A. Kuba, K. Tastumi, H. Adach, T. Yamamoto, J. Mater. Res. 17, 731 (2002)
  • 5. A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, R. Riedel, J. Am. Ceram. Soc. 85, 86 (2002)
  • 6. J.Z. Jiang, F. Kragh, D.J. Frost, K. Stahl, H. Lindelov, J. Phys., Condens. Matter 13, L515 (2001)
  • 7. F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)
  • 8. M.B. Kruger, J.H. Nguyen, Y.M. Li, W.A. Caldwell, M.H. Manghnani, R. Jeanloz, Phys. Rev. B 55, 3456 (1997)
  • 9. J.Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J.M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, D.J. Frost, Phys. Rev. B 65, 161202 (2002)
  • 10. W. Paszkowicz, R. Minikayev, P. Piszora, M. Knapp, C. Bähtz, J.M. Recio, M. Marqués, P. Mori-Sánchez, L. Gerward, J.Z. Jiang, Phys. Rev. B 69, 052103 (2004)
  • 11. K. Kato, I. Inoue, K. Kijima, I. Kawada, H. Tananka, T. Yamane, J. Am. Ceram. Soc. 58, 90 (1975)
  • 12. R.J. Bruls, H.T. Hintzen, G. de With, R. Metselaar, J.C. van Miltenburg, J. Phys. Chem. Solids 62, 783 (2001)
  • 13. L. Cartz, J.D. Jorgensen, J. Appl. Phys. 52, 236 (1981)
  • 14. E. Soignard, M. Somayazulu, J.J. Dong, O.F. Sankey, P.E. McMillan, J. Phys., Condens. Matter 13, 557 (2001)
  • 15. W.Y. Ching, L. Ouyang, J.D. Gale, Phys. Rev. B 61, 8696 (2000)
  • 16. R. Belkada, T. Shibayanagi, M. Naka, J. Am. Ceram. Soc. 83, 2449 (2000)
  • 17. S. Ogata, N. Hirosaki, C. Kocer, H. Kitagawa, Phys. Rev. B 64, 172102 (2001)
  • 18. C.M. Fang, G.A. de Wijs, H.T. Hintzen, G.J. de With, J. Appl. Phys. 93, 5175 (2003)
  • 19. Y. Wang, D. Chen, X. Zhang, Phys. Rev. Lett. 84, 3220 (2000)
  • 20. Y. Wang, Phys. Rev. B 62, 196 (2000)
  • 21. Y. Wang, Phys. Rev. B 63, 245108 (2001)
  • 22. Y. Wang, R. Ahuja, B. Johansson, Phys. Rev. B 65, 014104 (2001)
  • 23. N.K. Bhatt, A.R. Jani, P.R. Vyas, V.B. Gohel, Physica B 65, 014104 (2001)
  • 24. N.K. Bhatt, P.R. Vyas, A.R. Jani, V.B. Gohel, J. Phys. Chem. Solids 66, 797 (2005)
  • 25. J.X. Sun, L.C. Cai, Q. Wu, F.Q. Jing, Phys. Rev. B 71, 024107 (2005)
  • 26. L.A. Girifalco, J. Phys. Chem. 96, 858 (1992)
  • 27. J.X. Sun, Physica B 34, 381 (2006)
  • 28. M.C. Abramo, C. Caccamo, J. Phys. Chem. Solids 57, 1751 (1996)
  • 29. M.C. Abramo, C. Caccamo, D. Costa, G. Pellicane, R. Ruberto, Phys. Rev. E 69, 031112 (2004)
  • 30. V.I. Zubov, N.P. Tretiakov, J.F. Sanchez, A.A. Caparica, Phys. Rev. B 53, 12080 (1996)
  • 31. V.I. Zubov, J.F. Sanchez-Ortiz, N.P. Tretiakov, I.V. Zubov, Phys. Rev. B 55, 6747 (1997)
  • 32. Z.W. Salsburg, W.W. Wood, J. Chem. Phys. 37, 798 (1962)
  • 33. F.H. Ree, A.C. Holt, Phys. Rev. B 8, 826 (1973)
  • 34. K. Westera, E.R. Cowley, Phys. Rev. B 11, 4008 (1975)
  • 35. E.R. Cowley, J. Gross, Zhaoxin Gong, G.K. Horton, Phys. Rev. B 42, 3135 (1990)
  • 36. A.C. Holt, M. Ross, Phys. Rev. B 1, 2700 (1970)
  • 37. E. Wasserman, L. Stixrude, Phys. Rev. B 53, 8296 (1996)
  • 38. J.X. Sun, H.C. Yang, Q. Wu, L.C. Cai, J. Phys. Chem. Solids 63, 113 (2002)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n416kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.