PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 687-698
Article title

Cole-Cole Plots for Linear and Nonlinear Dielectric Relaxation in Solutions of Rigid Highly Dipolar Symmetric-Top Molecules in Spherical Solvents

Content
Title variants
Languages of publication
EN
Abstracts
EN
The graphical analysis of the influence of the rotational diffusion tensor anisotropy and the orientation of the permanent dipole moment on the linear and nonlinear dielectric relaxation is shown. The solution of Smoluchowski-Debye rotational diffusion equation for rigid, and noninteracting polar, symmetric-top molecules, in the "weak molecular reorientation approximation", was used. In order to highlight the influence of the symmetric shape of molecule, in comparison with classical, spherical-top Smoluchowski rotational diffusion, we present sets of Argand-type plots and three-dimensional Cole-Cole diagrams for linear and nonlinear electric susceptibilities. The results indicate that, in describing the nonlinear dielectric relaxation, the simplest spherical-top rotational diffusion model may be a sufficient approximation in some special cases only.
Keywords
EN
Contributors
author
  • Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
  • 1. W. Alexiewicz, K. Grygiel, Acta Phys. Pol. A 114, 667 (2008)
  • 2. S. Kielich, Nonlinear Molecular Optics, PWN, Warsaw 1977 (in Polish);Nauka, Moscow 1981 (in Russian)
  • 3. B. Kasprowicz-Kielich, S. Kielich, Adv. Mol. Relaxation Processes 7, 275 (1975)
  • 4. W. Alexiewicz, B. Kasprowicz-Kielich, Adv. Chem. Phys. 85, 1 (1993)
  • 5. W. Alexiewicz, Mol. Phys. 83, 245 (1994)
  • 6. W. Alexiewicz, Acta Phys. Pol. B 31, 1051 (2000)
  • 7. W. Alexiewicz, Chem. Phys. Lett. 320, 582 (2000)
  • 8. P. Debye, Polare Molekeln, Hirzel, Leipzig, 1929;Polar Molecules, Dover, New York 1945
  • 9. H. Watanabe, A. Morita, Adv. Chem. Phys. 56, 55 (1984)
  • 10. A. Morita, H. Watanabe, J. Chem. Phys. 77, 1193 (1982)
  • 11. W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation With Applications in Physics, Chemistry and Electrical Engineering, World Sci., Singapore 1996
  • 12. J.L. Dejardin, Dynamic Kerr Effect. The Use and Limits of the Smoluchowski Equation and Nonlinear Inertial Responses, World Sci., Singapore 1995
  • 13. J.L. Dejardin, Yu.P. Kalmykov, J. Chem. Phys. 107, 508 (1997);108, 3081 (1998)
  • 14. Y.P. Kalmykov, Phys. Rev. E 65, 021101 (2001)
  • 15. A. Chełkowski, Dielectric Physics, PWN, Warsaw, Elsevier, Amsterdam 1980
  • 16. W.T. Coffey, J. Mol. Liquids 114, 5 (2004)
  • 17. J. Jadżyn, L. Hellemans, Acta Phys. Pol. A 67, 1093 (1985)
  • 18. J. Jadżyn, J.P. Parneix, C. Legrand, R. Njeumo, R. Dąbrowski, Acta Phys. Pol. A 71, 53 (1987)
  • 19. P. Kędziora, J. Jadżyn, K. De Smet, L. Hellemans, Chem. Phys. Lett. 289, 541 (1998)
  • 20. J. Jadżyn, P. Kędziora, L. Hellemans, K. De Smet, Chem. Phys. Lett. 302, 337 (1999)
  • 21. J. Jadżyn, P. Kędziora, L. Hellemans, Phys. Lett. A 251, 49 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n404kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.