PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 4 | 667-686
Article title

Kinetic Theory of the Langevin Saturation in Dilute Solution of Dipolar Symmetric-Top Molecules in Spherical Solvents

Content
Title variants
Languages of publication
EN
Abstracts
EN
Assuming the low molecular reorientation approximation, the formulae for the third-order electric polarization induced in liquids composed of rigid noninteracting dipolar, symmetric-top molecules in spherical solvents were derived. Our medium is acted on by a strong external dc bias electric field superimposed on a weak ac electric field, and the classical Smoluchowski-Debye equation for rotational diffusion of the symmetric-top molecules is applied. In order to highlight the influence of the anisotropy of rotational diffusion tensor components and the orientation of permanent dipole moment of the molecule on the complex linear and nonlinear electric susceptibilities, we present three-dimensional plots of the linear and nonlinear dispersion and absorption spectra, for different values of the frequency of ac electric field.
Keywords
EN
Contributors
author
  • Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
  • 1. P. Debye, Polare Molekeln, Hirzel, Leipzig 1929;Polar Molecules, Dover, New York 1945
  • 2. F. Perrin, J. Phys. Radium 5, 497 (1934);7, 1 (1936)
  • 3. A. Budo, E. Fischer, S. Miyamoto, Phys. Z 40, 337 (1939)
  • 4. J.L. Dejardin, P.M. Dejardin, Yu.P. Kalmykov, J. Chem. Phys. 107, 508 (1997);108, 3081 (1998)
  • 5. J.L. Dejardin, Dynamic Kerr Effect. The Use and Limits of the Smoluchowski Equation and Nonlinear Inertial Responses, World Sci., Singapore 1995
  • 6. W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation With Applications in Physics, Chemistry and Electrical Engineering, World Sci., Singapore 1996
  • 7. S. Kielich, Nonlinear Molecular Optics, PWN, Warsaw 1977 (in Polish);Nauka, Moscow 1981 (in Russian)
  • 8. S. Kielich, in: Dielectric and Related Molecular Processes, Ed. M. Davis, Vol. I, Chem. Soc. London 1972, Chap. 7
  • 9. B. Kasprowicz-Kielich, S. Kielich, Adv. Mol. Relaxation Processes 7, 275 (1975)
  • 10. W. Alexiewicz, B. Kasprowicz-Kielich, Adv. Chem. Phys. 85, 1 (1993)
  • 11. W. Alexiewicz, Mol. Phys. 83, 245 (1994)
  • 12. A. Piekara, Phys. Z. 28, 671 (1937)
  • 13. A. Chełkowski, Dielectric Physics, PWN, Warsaw, Elsevier, Amsterdam 1980
  • 14. K. De Smet, L. Hellemans, J.F. Rouleau, R. Courteau, T.K. Bose, Phys. Rev. E 57, 1384 (1998)
  • 15. P. Kędziora, J. Jadżyn, K. De Smet, L. Hellemans, Chem. Phys. Lett. 289, 541 (1998)
  • 16. J. Jadżyn, P. Kędziora, L. Hellemans, Phys. Lett. A 251, 49 (1999)
  • 17. J. Jadżyn, G. Czechowski, D. Bauman, J.L. Dejardin, H. Kresse, R. Douali, Ch. Legrand, Phys. Rev. E 71, 052701 (2005)
  • 18. J. Jadżyn, G. Czechowski, J.L. Dejardin, M. Ginovska, J. Phys. Chem. A 111, 8325 (2007)
  • 19. H. Watanabe, A. Morita, Adv. Chem. Phys. 56, 255 (1984)
  • 20. A. Morita, H. Watanabe, J. Chem. Phys. 77, 1193 (1982)
  • 21. J.L. Dejardin, J. Mol. Liq. 114, 51 (2004)
  • 22. W. Alexiewicz, Acta Phys. Pol. B 31, 1051 (2000)
  • 23. Y.P. Kalmykov, Phys. Rev. E 65, 021101 (2001)
  • 24. W.T. Coffey, J. Mol. Liquids 114, 5 (2004)
  • 25. J.L. Dejardin, J. Jadżyn, J. Chem. Phys. 122, 074502 (2005)
  • 26. J.L. Dejardin, J. Jadżyn, J. Chem. Phys. 123, 174502 (2005)
  • 27. J.L. Dejardin, J. Jadżyn, J. Chem. Phys. 125, 114503 (2006)
  • 28. T. Schimomura, Y. Kimura, K. Ito, R. Hayakawa, Colloids Surf. A 148, 155 (1999)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n403kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.