PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 3 | 491-499
Article title

Cluster Expansion Method for Evolving Weighted Networks Having Vector-Like Nodes

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The cluster variation method known in statistical mechanics and condensed matter is revived for weighted bipartite networks. The decomposition (or expansion) of a Hamiltonian through a finite number of components, whence serving to define variable clusters, is recalled. As an illustration the network built from data representing correlations between (4) macroeconomic features, i.e. the so-called vector components, of 15 EU countries, as (function) nodes, is discussed. We show that statistical physics principles, like the maximum entropy criterion points to clusters, here in a (4) variable phase space: Gross Domestic Product, Final Consumption Expenditure, Gross Capital Formation and Net Exports. It is observed that the maximum entropy corresponds to a cluster which does not explicitly include the Gross Domestic Product but only the other (3) "axes", i.e. consumption, investment and trade components. On the other hand, the minimal entropy clustering scheme is obtained from a coupling necessarily including Gross Domestic Product and Final Consumption Expenditure. The results confirm intuitive economic theory and practice expectations at least as regards geographical connexions. The technique can of course be applied to many other cases in the physics of socio-economy networks.
Keywords
Contributors
author
  • GRAPES, SUPRATECS, U.Lg, B5a Sart-Tilman, B-4000 Liège, Belgium
author
  • National College Roman, Voda Roman-5550, Neamt, Romania
References
  • 1. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)
  • 2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford 2003
  • 3. R. Kikuchi, Phys. Rev. 81, 988 (1951)
  • 4. M. Kurata, R. Kikuchi, T. Watari, J. Chem. Phys. 21, 434 (1953)
  • 5. R. Kikuchi, S.G. Brush, J. Chem. Phys. 47, 195 (1967)
  • 6. A. Pelizzola, J. Phys. A 38, R309 (2005)
  • 7. G. Biroli, O. Parcollet, G. Kotliar, Phys. Rev. B 69, 205108 (2004)
  • 8. P. Smyth, Pattern Recogn. Lett. 18, 1261 (1997)
  • 9. S.N. Durlauf, D.T. Quah, in: Handbook of Macroeconomics, Eds. J.B. Taylor, M. Woodford, North-Holland Elsevier Sci., Dordrecht 1999, p. 231
  • 10. http://helpdesk.rootsweb.com/codes/
  • 11. http://devdata.worldbank.org/query/default.htm
  • 12. J. Miskiewicz, M. Ausloos, Int. J. Mod. Phys. C 17, 317 (2006)
  • 13. M. Ausloos, R. Lambiotte, Physica A 382, 16 (2007)
  • 14. M. Gligor, M. Ausloos, J. Econ. Integration 23, 297 (2008)
  • 15. R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)
  • 16. M. Gligor, M. Ausloos, Eur. Phys. J. B 57, 139 (2007)
  • 17. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)
  • 18. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach, Cambridge University Press, Cambridge 2004;R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera, Statistical Mechanics of Complex Networks, Lect. Notes Phys., Vol. 625, Springer, Berlin 2003
  • 19. T. Mora, Appl. Econ. Lett. 12, 937 (2005)
  • 20. S. Barrios, E. Strobl, Econ. Lett. 82, 71 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv114n301kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.