Preferences help
enabled [disable] Abstract
Number of results
2008 | 114 | 2 | 287-307
Article title

Synchrotron Methods of the Conduction Band Electronic Structure Analysis

Title variants
Languages of publication
The experimental and theoretical studies of the density of states for unoccupied conduction band are a valid source of knowledge on the electronic structure of condensed matter. Among known analytical methods of density of states for unoccupied states a significant place is occupied by the methods with the use of intensive synchrotron radiation beam. Adequately chosen monochromatic beam excites electrons from the occupied core states or the valence band to unoccupied states in the conduction band. The most universal experimental method for the studies of the unoccupied conduction band is the X-ray absorption near edge structure analysis for X-ray edges of the constituent atoms of the material. A satisfying description of the unoccupied conduction band density of states can be also reached by the analysis of reflectivity coefficient in the vacuum ultraviolet (above 10 eV). The photoelectron energy distribution curves elaborated by the constant initial state and constant final state procedures deliver valuable information on the high excited states of conduction band. In the paper the menaces of the correct interpretation of the experimental results will be discussed. The efficiency of the unoccupied conduction band density of states studies with application of X-ray absorption near edge structure and analysis of reflectivity coefficient of light will be presented on the basis of several binary and ternary semiconductor compounds of II-VI group with transition metals as well as of some other compounds. To avoid a misinterpretation of the experimental results, the data were compared and discussed with an adequate theoretical band structure calculation.
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
  • 1. Semiconductors, Ed. N.B. Hanney, Reinhold Publ. Co., New York 1959
  • 2. C. Kittel, Introduction to Solid State Physics, Wiley, New York 1997
  • 3. N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rinehart, Winston, New York 1976
  • 4. J.C. Phillips, Solid State Phys. 18, 58 (1966)
  • 5. T.S. Moss, G.J. Barrell, B. Ellis, Semiconductor Opto-Electronics, Butterworth&Co.Ltd, New York 1973
  • 6. F. Bassani, G. Pastori-Paravicini, in: Electronic States and Optical Transitions in Solids, Ed. R.A. Ballinger, Pergamon Press, Oxford 1975
  • 7. L.G. Parratt, Rev. Mod. Phys. 31, 616 (1959)
  • 8. J.E. Muller, J.W. Wilkins, Phys. Rev. B 29, 4331 (1984)
  • 9. A. Kisiel, G. Dalba, P. Fornasini, M. Podgorny, J. Oleszkiewicz, F. Rocca, E. Burattini, Phys. Rev. B 39, 7895 (1989)
  • 10. Unoccupied Electronic States, Fundamentals for XANES, EELS, IPS and BIS, Eds. J.C. Fuggle, J.E. Ingelsfield, Springer Verlag, Berlin 1992
  • 11. G. Margaritondo, Introduction to Synchrotron Radiation, Oxford University Press, New York 1988
  • 12. Synchrotron Radiation. Techniques and Applications, Topics in Current Physics, Vol. 10, Ed. C. Kunz, Springer-Verlag, Berlin 1979
  • 13. A. Kisiel, Bull. Polish Synchrotron Radiation Society 6, 145 (2006)
  • 14. R. Markowski, M. Piacentini, D. Dębowska, M. Zimnal-Starnawska, F. Lama, N. Zema, A. Kisiel, J. Phys. Condens. Matter 6, 3207 (1994)
  • 15. M. Cardona, D.L. Greenaway, Phys. Rev. 131, 98 (1963)
  • 16. A. Kisiel, M. Zimnal-Starnawska, F. Antonangeli, M. Piacentini, N. Zema, Nuovo Cimento 8D, 436 (1986)
  • 17. A. Kisiel, M. Piacentini, D. Dębowska, N. Zema, F. Lama, M. Zimnal-Starnawska, W. Giriat, A. Hołda, R. Markowski, J. Phys., Condens. Matter 9, 8767 (1997)
  • 18. J. Oleszkiewicz, M. Podgórny, A. Kisiel, E. Burattini, Phys. Rev. B 60, 4920 (1999)
  • 19. A. Kisiel, M. Piacentini, F. Antonangeli, J. Oleszkiewicz, A. Rodzik, N. Zema, A. Mycielski, J. Phys. C, Solid State Phys. 20, 5601 (1987)
  • 20. E.K. Richtmyer, S.W. Barnas, E. Ramberg, Phys. Rev. 46, 843 (1934)
  • 21. J. Hormes, R. Chauvistre, W. Schmitt, M. Pantelouris, Acta Phys. Pol. A 82, 37 (1992)
  • 22. W.M. Kwiatek, A.L. Hanson, C. Paluszkiewicz, M. Gałka, M. Gajda, T. Cichocki, J. Alloys Comp. 362, 83 (2004)
  • 23. W.M. Kwiatek, A. Banaś, K. Banaś, M. Gajda, M. Gałka, G. Falkenberg, T. Cichocki, J. Alloys Comp. 401, 178 (2005)
  • 24. J. Foriel, P. Philippot, J. Susini, P. Dumas, A. Somogyi, M. Salome, H. Khodja, B. Menez, Y. Fouquet, D. Moreira, P. Lopez-Garcia, Geochim. Cosmochem. Acta 68, 1561 (2004)
  • 25. W.M. Kwiatek, A. Banaś, K. Banaś, A. Kisiel, G. Cinque, G. Falkenberg, Acta Phys. Pol. A 109, 383 (2006)
  • 26. W.M. Kwiatek, M. Podgórczyk, Cz. Paluszkiewicz, A. Balerna, A. Kisiel, Acta Phys. Pol. A 114, 463 (2008)
  • 27. J. Konior, S. Kaprzyk, Acta Phys. Pol. A 87, 269 (1995)
  • 28. P. Zajdel, A. Kisiel, J. Warczewski, J. Konior, L.I. Koroleva, J. Krok-Kowalski, P. Gusin, E. Burattini, G. Cinque, A. Grilli, R.V. Demin, J. Alloys Comp. 401, 145 (2005)
  • 29. J.E. Muller, J.W. Wilkins, Phys. Rev. B 29, 4331 (1984)
  • 30. A. Kisiel, P. Zajdel, P.M. Lee, E. Burattini, W. Giriat, J. Alloys Comp. 286, 61 (1999)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.