EN
Transport properties via temperature dependences of sample resistance R(T) and influence of microwave field of 10 GHz on the conductivity of the single-walled carbon nanotubes fibers are investigated. The R(T) dependences studied within 4.2-300 K can be well approximated by the Mott law for 3D variable range hopping below T=80 K and by typical law for fluctuation-induced tunnelling model within the temperature range 80-300 K. We associate the observed increase in the conductivity with microwave power by increase in hopping probability of the charge carriers between single-walled carbon nanotubes.