Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 113 | 2 | 713-722

Article title

An ab initio Study of a Model of Single Wall GaN Nanotubes with Oxygen and Zinc as Impurities: Structural and Electronic Properties

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report a comprehensive theoretical study of structural and electronic properties of substitutional oxygen and zinc contaminations in a model of single wall GaN nanotubes by means of ab initio supercell calculations. Our investigation yields many interesting results. The following ones deserve to be developed. Oxygen forms a shallow donor in the single wall GaN nanotubes as in bulk GaN polytypes. Its ionization energy is deeper than its counterpart in the bulk wurtzite GaN, so it can be a suitable n-type dopant in high temperature applications. Zinc is a relatively shallow acceptor at gallium site. It behaves as charge carrier trap at nitrogen site. The site preference of zinc impurity depends on the stoichiometry. Zinc at gallium site has small ionization energy, thus it would be an efficient p-dopant in GaN nanotubes unlike in bulk GaN polytypes.

Keywords

Year

Volume

113

Issue

2

Pages

713-722

Physical description

Dates

published
2008-02
received
2007-08-24
(unknown)
2007-12-24

Contributors

author
  • University of Bejaia, Department of Physics, Theoretical Physics Laboratory, Solid State Physics Group, Bejaia 06000, Algeria
author
  • University of Bejaia, Department of Physics, Theoretical Physics Laboratory, Solid State Physics Group, Bejaia 06000, Algeria

References

  • 1. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)
  • 2. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature (London) 422, 599 (2003)
  • 3. S.M. Lee, Y.H. Lee, Y.G. Hwang, J. Elsner, D. Porezag, T. Frauenheim, Phys. Rev. B 60, 7788 (1999)
  • 4. S. Iijima, Nature (London) 354, 56 (1991)
  • 5. A. Gali, Phys. Rev. B 73, 245415 (2006)
  • 6. J.M. Soler, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sanchéz-Portal, J. Phys. Condens. Matter 14, 2745 (2002)
  • 7. J.P. Perdew, K. Burke, Mathias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  • 8. N. Troullier J.L. Martins, Phys. Rev. B 43, 1993 (1991)
  • 9. Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Phys. Rev. B 73, 205320 (2006)
  • 10. H.J. Monkhorst J.K. Pack, Phys. Rev. B 13, 5188 (1976)
  • 11. M. Zhang, Z.-M. Su, L.-K. Yan, Y.-Q. Qiu, G.-H. Chen, R.-S. Wang, Chem. Phys. Lett. 408, 145 (2005)
  • 12. CRC Handbook of Chemistry and Physics, 67 ed., Ed. by R.C. West, CRC, Boca Raton FL 1986
  • 13. J. Neugebauer, C.G. Van de Walle, Festkörperprobleme/Adv. Solid State Phys. 35, 25 (1996)
  • 14. C. Liu, J. Kang, Optical Materials 23, 169 (1903)
  • 15. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969))
  • 16. E. Ejder, P.-O. Fagerstrm, Phys. Chem. Solids 36, 289 (1975)
  • 17. R.K. Crouch. W.J. Debnam, A.L. Fripp, J. Mater. Sci. 13, 2358 (1978)
  • 18. B. Monemar, O. Lagerstedt, H.P. Gislason, J. Appl. Phys. 51, 625 (1980)
  • 19. G. Jacob, M. Boulou, M. Furtado, J. Cryst. Growth 42, 136 (1977)
  • 20. M. Boulou, M. Furtado, G. Jacob, D. Bois, J. Lumin. 18/19, 767 (1979)
  • 21. J.I. Pankove, J.E. Berkeyheiser, E.A. Miller, J. Appl. Phys. 45, 1280 (1974)
  • 22. J.I. Pankove, J.E. Berkeyheiser, J. Appl. Phys. 45, 3892 (1974)
  • 23. I. Gorczyca, A. Svane, N.E. Christensen, Solid State Commun. 101, 747 (1997)
  • 24. S. Strite, H. Marko, J. Vac. Sci. Technol. B 10, 1237 (1992);S. Strite, in: Properties of Group III Nitrides, Ed. J.H. Edgar, INSPEC, Kansas City 1996, p. 272

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv113n210kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.