PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 112 | 4 | 681-690
Article title

Parking in the City

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We show that the spacing distribution between parked cars can be obtained as a solution of certain linear distributional fixed point equation. The results are compared with the data measured on the streets of Hradec Králové. We also discuss a relation of these results to the random matrix theory.
Keywords
EN
Year
Volume
112
Issue
4
Pages
681-690
Physical description
Dates
published
2007-10
received
2007-05-25
References
  • 1. J.W. Evans, Rev. Mod. Phys., 65, 1281, 1993
  • 2. A. Cadilhe, N.A.M. Araujo, V. Privman, J. Phys. Condens. Mater, 19, 065124, 2007
  • 3. A. Renyi, Publ. Math. Inst. Hung. Acad. Sci., 3, 109, 1958
  • 4. R. Arnott, E. Inci, J. Urban Econom., 60, 418, 2006
  • 5. H.J. Griffionen-Joung, H.J.W. Janssen, D.J. van Amelsfoork, J.J. Langefeld, in: 8th Europ. Conf. on Mobility Management ECOMM 2004, Grand Lyon Communaute Urbaine, 2004, p. 1
  • 6. S. Hess, J.W. Polak, Mixed Logit Estimation of Parking Type Choice, Presented at 83rd Annual Meeting of the Transportation Research Board, Washington DC, 2004
  • 7. S. Rawal, G.J. Rodgers, Physica A, 246, 621, 2005
  • 8. N.A.M. Araujo, A. Coadilhe, Phys. Rev. E, 73, 051602, 2006
  • 9. M.R.D. Orsogna, T. Chou, J. Phys. A, 38, 531, 2005
  • 10. X.F. Yang, K.M. Knowles, J. Am. Ceram. Soc., 75, 141, 1992
  • 11. J.K. Mackenzie, J. Chem. Phys., 37, 723, 1962
  • 12. A.Y. Abul-Magd, Physica A, 368, 536, 2006
  • 13. F.J. Dyson, J. Math. Phys., 3, 140, 1962
  • 14. M.L. Mehta, Random Matrices, 2nd ed., Academic, New York 1991
  • 15. A. Fader, The gap size distribution of parked cars and the Coulomb gas model, Mathematics REV Paper, 2006, available at http://www.umich.edu/afader
  • 16. L. Devroye, R. Neininger, Adv. Appl. Prob., 34, 441, 2002
  • 17. D.J. Aldous, A. Bandyopadhyay, Ann. Appl. Prob., 15, 1047, 2005
  • 18. M.D. Penrose, A.R. Wade, Adv. Appl. Prob., 36, 691, 2004
  • 19. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, Cambridge 1995
  • 20. A. Gnedin, S. Kerov, Combinat. Prob. Comput., 10, 213, 2001
  • 21. R. Arratia, A.D. Barbour, S. Tavare, Combinat. Prob. Comput., 8, 407, 1999
  • 22. Hsien-Kuei Hwang,Tsung-Hsi Tsai, Combinat. Prob. Comput., 11, 353, 2002
  • 23. T. Huillet, eprint arXiv:cond-mat/0412166
  • 24. R. Aguech, N. Lasmar, H. Mahmoud, J. Appl. Prob., 43, 1, 2006
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv112n410kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.