Title variants
Languages of publication
Abstracts
Information functionals allow one to quantify the degree of randomness of a given probability distribution, either absolutely (through min/max entropy principles) or relative to a prescribed reference one. Our primary aim is to analyze the "minimum information" assumption, which is a classic concept (R. Balian, 1968) in the random matrix theory. We put special emphasis on generic level (eigenvalue) spacing distributions and the degree of their randomness, or alternatively - information/organization deficit.
Discipline
- 05.45.-a: Nonlinear dynamics and chaos(see also section 45 Classical mechanics of discrete systems; for chaos in fluid dynamics, see 47.52.+j; for chaos in superconductivity, see 74.40.De)
- 03.65.-w: Quantum mechanics[see also 03.67.-a Quantum information; 05.30.-d Quantum statistical mechanics; 31.30.J- Relativistic and quantum electrodynamics (QED) effects in atoms, molecules, and ions in atomic physics]
- 02.50.-r: Probability theory, stochastic processes, and statistics(see also section 05 Statistical physics, thermodynamics, and nonlinear dynamical systems)
Journal
Year
Volume
Issue
Pages
619-634
Physical description
Dates
published
2007-10
received
2007-05-25
Contributors
author
- Institute of Physics, University of Opole, Oleska 48, 45-052 Opole, Poland
References
- 1. F. Haake, Quantum Signatures of Chaos, Springer-Verlag, Berlin 2000
- 2. M.L. Mehta, Random Matrices, Academic Press, Boston 1991
- 3. T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York 1991
- 4. S. Kullback, Information Theory and Statistics, Wiley, New York 1959
- 5. K. Sobczyk, Mech. Syst. Sign. Proc., 15, 475, 2001
- 6. P. Garbaczewski, J. Stat. Phys., 123, 315, 2006
- 7. P. Garbaczewski, Phys. Lett. A, 299, 447, 2002
- 8. S. Karlin, M.H. Taylor, A Second Course in Stochastic Processes, Academic Press, New York 1981
- 9. F. Calogero, J. Math. Phys., 10, 2191, 1969
- 10. P. Garbaczewski, W. Karwowski, Am. J. Phys., 72, 924, 2004
- 11. F.J. Dyson, J. Math. Phys., 3, 1191, 1962
- 12. L.C.G. Rogers, Z. Shi, Probab. Theory Relat. Fields, 95, 555, 1993
- 13. R. Balian, Nuovo Cimento B, 57, 183, 1968
- 14. T. Yukawa, Phys. Rev. Lett., 54, 1883, 1985
- 15. J.Z. Ma, H. Hasegawa, Z. Phys. B, 93, 529, 1994
- 16. K.A. Muttalib, Phys. Rev. Lett., 65, 745, 1990
- 17. L.R. Mead, N. Papanicolau, J. Math. Phys., 25, 2404, 1984
- 18. P. Garbaczewski, Acta Phys. Pol. B, 33, 1001, 2002
- 19. M.C. Mackey, M. Tyran-Kamińska, Physica A, 365, 360, 2006
- 20. P. Garbaczewski, Appl. Math. Information Sci., 1, 1, 2007
- 21. A.J. Stam, Inf. Control,, 2, 101, 1959
- 22. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys., 44, 129, 1975
- 23. R.J. Yanez, W. Van Assche, J.S. Dehesa, Phys. Rev. A, 50, 3065, 1994
- 24. R.J. Yanez, W. Van Assche, R. González-Férez, Jesús S. Dehesa, J. Math. Phys., 40, 5675, 1999
- 25. S.E. Massen, Phys. Rev. C, 67, 014314, 2003
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv112n405kz