Preferences help
enabled [disable] Abstract
Number of results
2007 | 112 | 2 | 331-337
Article title

Deep-Level Defects in MBE-Grown GaN-Based Laser Structure

Title variants
Languages of publication
We present results of deep-level transient spectroscopy investigations of defects in a GaN-based heterostructure of a blue-violet laser diode, grown by plasma-assisted molecular beam epitaxy on a bulk GaN substrate. Three majority-carrier traps, T1 at E_C - 0.28 eV, T2 at E_C - 0.60 eV, and T3 at E_V + 0.33 eV, were revealed in deep-level transient spectra measured under reverse-bias conditions. On the other hand, deep-level transient spectroscopy measurements performed under injection conditions, revealed one minority-carrier trap, T4, with the activation energy of 0.20 eV. The three majority-carrier traps were revealed in the spectra measured under different reverse-bias conditions, suggesting that they are present in various parts of the laser-diode heterostructure. In addition, these traps represent different charge-carrier capture behaviours. The T1 trap, which exhibits logarithmic capture kinetics, is tentatively attributed to electron states of dislocations in the n-type wave-guiding layer of the structure. In contrast, the T2, T3, and T4 traps display exponential capture kinetics and are assigned to point defects.
Physical description
  • 1. D.V. Lang, in: Topics in Applied Physics, Vol. 37, Ed. P. Braunlich, Springer, Berlin 1979, p. 93
  • 2. P. Omling, E.R. Weber, L. Montelius, H. Alexander, J. Michel, Phys. Rev. B, 32, 6571, 1985
  • 3. T. Wosinski, J. Appl. Phys., 65, 1566, 1989
  • 4. I. Akasaki, J. Cryst. Growth, 300, 2, 2007
  • 5. I. Grzegory, S. Porowski, Thin Solid Films, 367, 281, 2000
  • 6. C. Skierbiszewski, P. Perlin, I. Grzegory, Z.R. Wasilewski, M. Siekacz, A. Feduniewicz, P. Wiśniewski, J. Borysiuk, P. Prystawko, G. Kamler, T. Suski, S. Porowski, Semicond. Sci. Technol., 20, 809, 2005
  • 7. W. Schroter, J. Kronewitz, U. Gnauert, F. Riedel, M. Seibt, Phys. Rev. B, 52, 13726, 1995
  • 8. W. Schroter, H. Hedemann, V. Kveder, F. Riedel, J. Phys., Condens. Matter, 14, 13047, 2002
  • 9. H.K. Cho, K.S. Kim, C.-H. Hong, H.J. Lee, J. Cryst. Growth, 223, 38, 2001
  • 10. H.K. Cho, C.S. Kim, C.-H. Hong, J. Appl. Phys., 94, 1485, 2003
  • 11. O. Yastrubchak, T. Wosiński, A. Makosa, T. Figielski, S. Porowski, I. Grzegory, R. Czernecki, P. Perlin, Phys. Status Solidi C, 4, 2878, 2007
  • 12. P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, K. Miyake, J. Appl. Phys., 76, 304, 1994
  • 13. D. Haase, M. Schmid, W. Kurner, A. Dornen, V. Harle, F. Scholz, M. Burkard, H. Schweizer, Appl. Phys. Lett., 69, 2525, 1996
  • 14. H.M. Chung, W.C. Chuang, Y.C. Pan, C.C. Tsai, M.C. Lee, W.H. Chen, W.K. Chen, C.I. Chiang, C.H. Lin, H. Chang, Appl. Phys. Lett., 76, 897, 2000
  • 15. Y. Tokuda, Y. Matsouka, H. Ueda, O. Ishiguro, N. Soejima, T. Kachi, Superlattices Microstructure, 40, 268, 2006
  • 16. D.W. Jenkins, J.D. Dow, Phys. Rev. B, 39, 3317, 1989
  • 17. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys., 95, 3851, 2004
  • 18. C.H. Park, D.J. Chadi, Phys. Rev. B, 55, 12995, 1997
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.