Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 112 | 1 | 3-12

Article title

Discrete Space-Time by Means of the Weyl-Dirac Theory

Content

Title variants

Languages of publication

EN

Abstracts

EN
A connection between the Weyl-Dirac theory and scale relativity theory through the hydrodynamic models (relativistic and non-relativistic approaches) is established. In such conjecture, considering that the motions of the microparticles take place on continuous but non-differentiable curves i.e. on fractals, a Weyl-Dirac type equation was found. Some correspondences with known hydrodynamic models, particularly Białynicki-Birula's approach, are analyzed. All these results reflect the fractal structure of the space-time (a concept in agreement with the new ideas on the space-time)

Keywords

EN

Contributors

author
  • Department of Physics, University of Athens, Athens 15771, Greece
  • Department of Physics, Technical "Gh. Asachi" University, Blvd. Mangeron no. 64, Iasi - 700029, Romania
author
  • Department of Physics, Technical "Gh. Asachi" University, Blvd. Mangeron no. 64, Iasi - 700029, Romania
author
  • Department of Physics, Technical "Gh. Asachi" University, Blvd. Mangeron no. 64, Iasi - 700029, Romania

References

  • 1. D. Weyl, Ann. Phys. (Leipzig), 59, 101, 1919
  • 2. P.A.M. Dirac, Proc. R. Soc. A, 333, 403, 1973
  • 3. M. Israelit, The Weyl-Dirac Theory and Our Universe, Nova, New York 1999
  • 4. D. Gregorash, G. Papini, Nuovo Cimento B, 63, 487, 1981
  • 5. W.R. Wood, G. Papini, Found. Phys. Lett., 6, 207, 1993
  • 6. W.R. Wood, G. Papini, Phys. Rev. D, 45, 3617, 1992
  • 7. D. Bohm, Phys. Rev., 85, 166, 1951
  • 8. M. Agop, P. Nica, Class. Quantum Grav., 16, 3367, 1999
  • 9. M. Agop, P. Nica, Class. Quantum Grav., 17, 3627, 2000
  • 10. M. Agop, P.D. Ioannou, C. Buzea, Class. Quantum Grav., 18, 4743, 2001
  • 11. L. Nottale, J. Schneider, J. Math. Phys., 25, 1296, 1984
  • 12. G. Ord, J. Phys. Math. Gen., 16, 1869, 1983
  • 13. L. Nottale, Int. J. Mod. Phys., 4, 5047, 1989
  • 14. L. Nottale, Fractal Space-Time and Microphysics, Towards a Theory of Scale Relativity, World Sci., Singapore 1992
  • 15. L. Nottale, Chaos, Solitons and Fractals, 7, 877, 1996
  • 16. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco 1982
  • 17. M. Agop, P. Nica, P.D. Ioannou, Olga Malandraki, I. Gavanas-Pahomi, Chaos, Solitons and Fractals, 34, 1704, 2007
  • 18. E. Madelung, Z. Phys., 40, 322, 1926
  • 19. T. Takabayasi, Prog. Theor. Phys., 8, 143, 1952
  • 20. T. Takabayasi, Prog. Theor. Phys., 9, 187, 1953
  • 21. T. Takabayasi, Prog. Theor. Phys., 14, 283, 1955
  • 22. T. Takabayasi, Prog. Theor. Phys., 70, 1, 1983
  • 23. D. Bohm, R. Schiller, J. Tiomno, Suppl. Nuovo Cimento, 1, 48, 1955
  • 24. D. Bohm, R. Schiller, Suppl. Nuovo Cimento, 1, 67, 1955
  • 25. L. Janossy, M. Ziegler-Naray, Acta Phys. Hung., 20, 23, 1965
  • 26. T. Takabayasi, Nuovo Cimento, 3, 233, 1956
  • 27. I. Bialynicki-Birula, Acta Phys. Pol. B, 26, 1201, 1995
  • 28. I. Bialynicki-Birula, in: Nonlinear, Chaotic, and Complex Systems, Eds. E. Infeld, R. Zelazny, A. Galkowski, Cambridge University Press, Cambridge 1997, s. 64
  • 29. G.'t Hooft, Nucl. Phys. B, 315, 527, 1981
  • 30. S. Hawking, R. Penrose, The Nature of Space and Time, Princeton University Press, New Jersey 1996
  • 31. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Jonathan Cape, London 2004

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv112n101kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.