We consider the iterative-perturbation theory and its generalization to multi-orbital Hubbard models. We discuss in detail all aspects of numerical implementations of the method.
Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
1. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys., 68, 13, 1996
2. S. Florens, A. Georges, G. Kotliar, O. Parcoller, Phys. Rev. B, 66, 205102, 2002
3. A. Georges, G. Kotliar, Phys. Rev. B, 45, 6479, 1992
4. M. Jarell, Phys. Rev. Lett., 69, 168, 1992
5. H. Kajueter, G. Kotliar, Phys. Rev. Lett., 77, 131, 1996
6. T. Fujiwara, S. Yamamoto, Y. Ishii, J. Phys. Soc. Jpn., 72, 777, 2003
7. Th. Prushke, R. Bulla, M. Jarell, Phys. Rev. B, 61, 12799, 2000
8. V. Janis, J. Phys., Condens. Matter, 10, 2915, 1998
9. M. Pothoff, T. Wegner, W. Nolting, Phys. Rev. B, 55, 16132, 1997
10. E. Muller-Hartmann, Z. Phys. B -- Condensed Matter, 76, 211, 1989
11. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge 1992, Ch. 12, p. 490