Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 111 | 4 | 619-633

Article title

Partial Localization of Correlated Electrons in an Orbitally Degenerate Narrow Band: Spin Dependent Masses, Saturated Ferromagnetism, and the Effective s-d Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
We determined the localization threshold in a partially filled and doubly degenerate model of correlated electrons. Particular emphasis is put on a non-integer band filling n≥1, when the system decomposes into the localized and the itinerant subsystems; this situation is described by an effective s-d model. A simultaneous transition to the ferromagnetic state is discussed as driven by the Hund rule coupling combined with the effective field coming from the correlations. The dependence of the quasiparticle mass on the spin direction appears naturally in the spin-polarized phase and is attributed to the electron correlation effects, as is also a metamagnetic transition in an applied field. Although the main results were obtained within the saddle point slave-boson approach, their qualitative features are discussed in general terms, i.e. as a transition from quantum-mechanical indistinguishability of particles forming the Fermi fluid to a two-component situation.

Keywords

EN

Contributors

author
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
author
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
author
  • Institut für Matematische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany

References

  • 1. C. Herring, in: Magnetism, Eds. G.T. Rado, H. Suhl, Academic Press, New York 1966, p. 120 and 190; J. Hubbard, Phys. Rev. B, 19, 2626, 1979; ibid. B, 20, 4584, 1979; T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in Solid-State Sciences, Vol. 56, Springer-Verlag, Berlin 1985
  • 2. G. Zwicknagl, A. Yaresko, P. Fulde, Phys. Rev. B, 65, 081103(R), 2002; D. Efremov, N. Hasselmann, E. Runge, P. Fulde, G. Zwicknagl, Phys. Rev. B, 69, 114115, 2004; E. Runge, P. Fulde, D. Efremov, N. Hasselmann, G. Zwicknagl, Phys. Rev. B, 69, 155110, 2004
  • 3. This question has been addressed in: A. Liebsch, Phys. Rev. Lett., 91, 226401, 2003, where only a single Mott transition was found. A different conclusion was reached in: A. Koga, N. Kawakami, J.M. Rice, M. Sigrist, Phys. Rev. Lett., 92, 216402, 2004; see also M.S. Laad, L. Craco, E. Muller-Hartman, Europhys. Lett., 69, 984, 2005, where the case of VO$_2$ was considered (and references therein to their earlier work)
  • 4. P.G.J. van Dongen, C. Knecht, N. Blumer, cond-mat/0507682 v1 28 Jul 2005; A. Ruegg, M. Indergand, S. Pilgram, M. Sigrist, Eur. Phys. J. B, 48, 55, 2005; L. de'Medici, A. Georges, S. Biermann, cond-mat/0503764; M. Ferrero, F. Becca, M. Fabrizio, M. Capone, cond-mat/0503759
  • 5. Cf. e.g. E.L. Nagaev, Physics of Magnetic Semiconductors, Mir Publ., Moscow 1983; K. Yosida, Theory of Magnetism, Springer-Verlag, Berlin 1998, Part IV
  • 6. J. Spalek, P. Gopalan, Phys. Rev. Lett., 64, 2823, 1990; P. Korbel, J. Spalek, W. Wójcik, M. Aquarone, Phys. Rev. B, 52, R 2213, 1995; for brief review see: J. Spalek, Phys. Status Solidi B, 243, 78, 2006
  • 7. A. McCollam, S.R. Julian, P.M.C. Rourke, D. Aoki, J. Flouquet, Phys. Rev. Lett., 94, 186401, 2005; M. Takashita, H. Aoki, T. Terashima, S. Uji, K. Maezawa, R. Settai, Y. Onuki, J. Phys. Soc. Jpn., 65, 515, 1996; I. Sheikin, A. Groger, S. Raymond, D. Jaccard, D. Aoki, H. Harima, J. Flouquet, Phys. Rev. B, 67, 094420, 2003
  • 8. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett., 57, 1362, 1986
  • 9. R. Frésard, G. Kotliar, Phys. Rev. B, 56, 12909, 1997; H. Hasegawa, J. Phys. Soc. Jpn., 66, 1391, 1997; Phys. Rev. B, 56, 1196, 1997; A. Klejnberg, J. Spalek, Phys. Rev. B, 57, 12041, 1998
  • 10. A general spin rotationally invariant formulation of the slave-boson approach for a single-band case was introduced in: T. Li, P. Hirschfeld, Phys. Rev. B, 40, 6817, 1989; R. Frésard, P. Wolfle, Int. J. Mod. Phys. B, 6, 237, 1992 (Erratum: ibid. B, 6, 3087, 1992); see also: J. Spalek, W. Wójcik, in: Spectroscopy of Mott Insulators and Correlated Metals, Eds. A. Fujimori, Y. Tokura, Springer, Berlin 1995, p. 41
  • 11. A general slave-boson representation of the Kotliar-Ruckenstein type for the two-band system with rotationally-invariant Hund's rule was introduced in: A. Klejnberg, J. Spalek, J. Phys., Condens. Matter, 11, 6553, 1999; Phys. Rev. B, 61, 15542, 2000
  • 12. W. Negele, H. Orland, Quantum Many-Particle Systems, Addison-Wesley, Redwood City 1988
  • 13. J. Spalek, in: Encyclopedia of Condensed Matter Physics, Eds. F. Bassani, G.L. Liedl, P. Wyder, Elsevier, Amsterdam 2005, p. 126; J. Spalek, A. Datta, J.M. Honig, Phys. Rev. Lett., 59, 728, 1987
  • 14. J. Spalek, Habilitation Thesis, Jagiellonian University, Kraków 1981, unpublished
  • 15. P.W. Anderson, H. Hasegawa, Phys. Rev., 100, 675, 1955; P.G. De Gennes, ibid., 118, 141, 1960

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv111n419kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.