Preferences help
enabled [disable] Abstract
Number of results
2007 | 111 | 4 | 619-633
Article title

Partial Localization of Correlated Electrons in an Orbitally Degenerate Narrow Band: Spin Dependent Masses, Saturated Ferromagnetism, and the Effective s-d Model

Title variants
Languages of publication
We determined the localization threshold in a partially filled and doubly degenerate model of correlated electrons. Particular emphasis is put on a non-integer band filling n≥1, when the system decomposes into the localized and the itinerant subsystems; this situation is described by an effective s-d model. A simultaneous transition to the ferromagnetic state is discussed as driven by the Hund rule coupling combined with the effective field coming from the correlations. The dependence of the quasiparticle mass on the spin direction appears naturally in the spin-polarized phase and is attributed to the electron correlation effects, as is also a metamagnetic transition in an applied field. Although the main results were obtained within the saddle point slave-boson approach, their qualitative features are discussed in general terms, i.e. as a transition from quantum-mechanical indistinguishability of particles forming the Fermi fluid to a two-component situation.
Physical description
  • 1. C. Herring, in: Magnetism, Eds. G.T. Rado, H. Suhl, Academic Press, New York 1966, p. 120 and 190; J. Hubbard, Phys. Rev. B, 19, 2626, 1979; ibid. B, 20, 4584, 1979; T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in Solid-State Sciences, Vol. 56, Springer-Verlag, Berlin 1985
  • 2. G. Zwicknagl, A. Yaresko, P. Fulde, Phys. Rev. B, 65, 081103(R), 2002; D. Efremov, N. Hasselmann, E. Runge, P. Fulde, G. Zwicknagl, Phys. Rev. B, 69, 114115, 2004; E. Runge, P. Fulde, D. Efremov, N. Hasselmann, G. Zwicknagl, Phys. Rev. B, 69, 155110, 2004
  • 3. This question has been addressed in: A. Liebsch, Phys. Rev. Lett., 91, 226401, 2003, where only a single Mott transition was found. A different conclusion was reached in: A. Koga, N. Kawakami, J.M. Rice, M. Sigrist, Phys. Rev. Lett., 92, 216402, 2004; see also M.S. Laad, L. Craco, E. Muller-Hartman, Europhys. Lett., 69, 984, 2005, where the case of VO$_2$ was considered (and references therein to their earlier work)
  • 4. P.G.J. van Dongen, C. Knecht, N. Blumer, cond-mat/0507682 v1 28 Jul 2005; A. Ruegg, M. Indergand, S. Pilgram, M. Sigrist, Eur. Phys. J. B, 48, 55, 2005; L. de'Medici, A. Georges, S. Biermann, cond-mat/0503764; M. Ferrero, F. Becca, M. Fabrizio, M. Capone, cond-mat/0503759
  • 5. Cf. e.g. E.L. Nagaev, Physics of Magnetic Semiconductors, Mir Publ., Moscow 1983; K. Yosida, Theory of Magnetism, Springer-Verlag, Berlin 1998, Part IV
  • 6. J. Spalek, P. Gopalan, Phys. Rev. Lett., 64, 2823, 1990; P. Korbel, J. Spalek, W. Wójcik, M. Aquarone, Phys. Rev. B, 52, R 2213, 1995; for brief review see: J. Spalek, Phys. Status Solidi B, 243, 78, 2006
  • 7. A. McCollam, S.R. Julian, P.M.C. Rourke, D. Aoki, J. Flouquet, Phys. Rev. Lett., 94, 186401, 2005; M. Takashita, H. Aoki, T. Terashima, S. Uji, K. Maezawa, R. Settai, Y. Onuki, J. Phys. Soc. Jpn., 65, 515, 1996; I. Sheikin, A. Groger, S. Raymond, D. Jaccard, D. Aoki, H. Harima, J. Flouquet, Phys. Rev. B, 67, 094420, 2003
  • 8. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett., 57, 1362, 1986
  • 9. R. Frésard, G. Kotliar, Phys. Rev. B, 56, 12909, 1997; H. Hasegawa, J. Phys. Soc. Jpn., 66, 1391, 1997; Phys. Rev. B, 56, 1196, 1997; A. Klejnberg, J. Spalek, Phys. Rev. B, 57, 12041, 1998
  • 10. A general spin rotationally invariant formulation of the slave-boson approach for a single-band case was introduced in: T. Li, P. Hirschfeld, Phys. Rev. B, 40, 6817, 1989; R. Frésard, P. Wolfle, Int. J. Mod. Phys. B, 6, 237, 1992 (Erratum: ibid. B, 6, 3087, 1992); see also: J. Spalek, W. Wójcik, in: Spectroscopy of Mott Insulators and Correlated Metals, Eds. A. Fujimori, Y. Tokura, Springer, Berlin 1995, p. 41
  • 11. A general slave-boson representation of the Kotliar-Ruckenstein type for the two-band system with rotationally-invariant Hund's rule was introduced in: A. Klejnberg, J. Spalek, J. Phys., Condens. Matter, 11, 6553, 1999; Phys. Rev. B, 61, 15542, 2000
  • 12. W. Negele, H. Orland, Quantum Many-Particle Systems, Addison-Wesley, Redwood City 1988
  • 13. J. Spalek, in: Encyclopedia of Condensed Matter Physics, Eds. F. Bassani, G.L. Liedl, P. Wyder, Elsevier, Amsterdam 2005, p. 126; J. Spalek, A. Datta, J.M. Honig, Phys. Rev. Lett., 59, 728, 1987
  • 14. J. Spalek, Habilitation Thesis, Jagiellonian University, Kraków 1981, unpublished
  • 15. P.W. Anderson, H. Hasegawa, Phys. Rev., 100, 675, 1955; P.G. De Gennes, ibid., 118, 141, 1960
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.