PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 111 | 4 | 603-618
Article title

Lieb-Wu Solution, Gutzwiller-Wave-Function, and Gutzwiller-Ansatz Approximations with Adjustable Single-Particle Wave Function for the Hubbard Chain

Content
Title variants
Languages of publication
EN
Abstracts
EN
The optimized single-particle wave functions contained in the parameters of the Hubbard model (t and U) were determined for an infinite atomic chain. In effect, the electronic properties of the chain as a function of interatomic distance R were obtained and compared for the Lieb-Wu exact solution, the Gutzwiller-wave-function approximation, and the Gutzwiller-ansatz case. The ground state energy and other characteristics for the infinite chain were also compared with those obtained earlier for a nanoscopic chain within the exact diagonalization combined with an ab initio adjustment of the single-particle wave functions in the correlated state (exact diagonalization combined with an ab initio method). For the sake of completeness, we briefly characterize also each of the solutions. Our approach completes the Lieb-Wu solution, as it provides the system electronic properties evolution as a function of physically controlable parameter - the interatomic distance.
Keywords
EN
Contributors
author
  • Instytut Fizyki, Politechnika Krakowska, Podchorążych 1, 30-084 Kraków, Poland
author
  • Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Reymonta 4, 30-059 Kraków, Poland
author
  • Instytut Fizyki, Politechnika Krakowska, Podchorążych 1, 30-084 Kraków, Poland
References
  • 1. For a didactical review see e.g. J. Spalek, Eur. J. Phys., 21, 511, 2000; exact solution of the Hubbard and related models have been detailed in: The One-Dimensional Hubbard Model, Eds. F.H. Essler, H. Frahm, F. Gohmann, A. Klumper, V. Korepin, Cambridge University Press, Cambridge 2005; M. Takahashi, Termodynamics of One-Dimensional Solvable Model, Cambridge University Press, Cambridge 1999
  • 2. J. Spalek, R. Podsiadly, W. Wojcik, A. Rycerz, Phys. Rev. B, 61, 15676, 2000
  • 3. J. Spalek, E.M. Gorlich, A. Rycerz, R. Zahorbeński, in: Proc. Mott Centennial Symp., Cambridge, UK, to appear in J. Phys., Condens. Matter; cf. also cond-mat/0610815
  • 4. J. Spalek, A. Rycerz, Phys. Rev. B, 64, 161105 (R), 2001; A. Rycerz, J. Spalek, Eur. Phys. J. B, 40, 153, 2004
  • 5. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett., 20, 1445, 1968
  • 6. M.C. Gutzwiller, Phys. Rev., 137, A1726, 1965
  • 7. W. Metzner, D. Vollhardt, Phys. Rev. B, 37, 7382, 1988
  • 8. J. Spalek, A. Datta, J.M. Honig, Phys. Rev. Lett., 49, 728, 1987; J. Spalek, W. Wójcik, in: Spectroscopy of Mott Insulators and Correlated Metals, Eds. A. Fujimori, Y. Tokura, Springer-Verlag, Berlin 1955, p. 41
  • 9. H. Bethe, Z. Phys., 71, 205, 1931
  • 10. W. Metzner, D. Vollhardt, Phys. Rev. Lett., 62, 324, 1989
  • 11. T. Ogawa, K. Kanda, T. Matsubara, Prog. Theor. Phys., 53, 614, 1975
  • 12. A. Rycerz, Ph.D. Thesis, Jagiellonian University, Kraków 2003; see: http://th-www.if.uj.edu.pl/ztms
  • 13. E.M. Gorlich, J. Kurzyk, A. Rycerz, R. Zahorbeński, R. Podsiadly, W. Wojcik, J. Spalek, in: Molecular Nanowires and Other Quantum Objects, Eds. A.S. Alexandrov, J. Demsar, I.K. Yanson, Kluwer Academic Publ., Dordrecht 2004, p. 355
  • 14. W.F. Brinkman, T.M. Rice, Phys. Rev. B, 2, 4302, 1970
  • 15. J. Spalek, A.M. Oleś, J.M. Honig, Phys. Rev. B, 28, 6802, 1983
  • 16. P.B. Wiegman, Pisma Zh. Eksp. Teor. Fiz., 31, 392, 1980 [JETP Lett., 31, 364, 1980]; N. Kawakami, A. Okiji, Phys. Lett. A, 86, 483, 1981
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv111n418kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.