EN
In this paper we report the results of synthesis and study of both ceramic samples and thin films of electronically doped La_{0.7}Pr_{0.3}MnO_3 and related heterostructures composed of La_{0.7}Pr_{0.3}MnO_3 and p-type La_{0.67}Ca_{0.33}MnO_3. The ceramic La_{0.7}Pr_{0.3}MnO_3 samples were prepared by a conventional solid state reaction technique. Single phase La_{0.7}Pr_{0.3}MnO_3 thin films and La_{0.7}Pr_{0.3}MnO_3/La_{0.67} Ca_{0.33}MnO_3 heterostructures were grown on lattice-matched perovskite NdGaO_3 substrates by pulsed laser deposition. Electron doping was indicated both for ceramic La_{0.7}Pr_{0.3}MnO_3 samples and thin films from thermopower data. Both ceramic samples and thin films of La_{0.7}Pr_{0.3}MnO_3 demonstrated resistivity of about 10 mΩ cm at 300 K and semiconductor-like resistance vs. temperature behavior with cooling down to 78 K. Meanwhile, the resistance of the La_{0.7}Pr_{0.3}MnO_3/La_{0.67}Ca_{0.33}MnO_3 interface showed an anomalous peak at 185 K. A series of post-deposition annealing experiments demonstrated a crucial role of annealing temperature and ambience on both electrical and magnetic properties of La_{0.7}Pr_{0.3}MnO_3 material and the heterostructures.