PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 110 | 2 | 111-124
Article title

Modeling of Semiconductor Nanostructures with nextnano^3

Content
Title variants
Languages of publication
EN
Abstracts
EN
nextnano^3 is a simulation tool that aims at providing global insight into the basic physical properties of realistic three-dimensional mesoscopic semiconductor structures. It focuses on quantum mechanical properties such as the global electronic structure, optical properties, and the effects of electric and magnetic fields for virtually any geometry and combination of semiconducting materials. For the calculation of the carrier dynamics a drift-diffusion model based on a quantum-mechanically calculated density is employed. In this paper we present an overview of the capabilities of nextnano^3 and discuss some of the main equations that are implemented into the code. As examples, we first discuss the strain tensor components and the piezoelectric effect associated with a compressively strained InAs layer for different growth directions, secondly, we calculate self-consistently the quantum mechanical electron density of a Double Gate MOSFET, then we compare the intersubband transitions in a multi-quantum well structure that have been obtained with a single-band effective mass approach and with an 8-band k·p model, and finally, we calculate the energy spectrum of a structure in a uniform magnetic field.
Keywords
Year
Volume
110
Issue
2
Pages
111-124
Physical description
Dates
published
2006-08
received
2006-06-17
References
  • 1. e.g. G. Snider's '1D Poisson' program available at http:/www.nd.edu/ gsnider/
  • 2. e.g. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B, 59, 5688, 1999
  • 3. The nextnano^3 software can be obtained from http://www.wsi.tum.de/nextnano3 and http://www.nextnano.de
  • 4. A. Trellakis, T. Zibold, T. Andlauer, S. Birner, R.K. Smith, R. Morschl, P. Vogl, J. Comp. Elec., in print
  • 5. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, 227, 1987
  • 6. T.B. Bahder, Phys. Rev. B, 41, 11992, 1990
  • 7. S.L. Chuang, C.S. Chang, Phys. Rev. B, 54, 2491, 1996
  • 8. M. Sabathil, S. Hackenbuchner, J.A. Majewski, G. Zandler, P. Vogl, J. Comp. Elec., 1, 81, 2002
  • 9. T. Kubis, P. Vogl, J. Comp. Elec., in print
  • 10. R. Entner, A. Gehring, T. Grasser, S. Selberherr, in: Proc. IEEE 27th Intern. Spring Seminar on Electronics Technology, Vol. 1, Ed. P. Philippov, Sofia 2004, p. 114
  • 11. P. Bergveld, IEEE Trans. Biomed. Eng., 17, 70, 1970
  • 12. T.W. Healy, L.R. White, Adv. Colloid Interface Sci., 9, 303, 1978
  • 13. M. Bayer, C. Uhl, P. Vogl, J. Appl. Phys., 97, 033703, 2005
  • 14. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B, 50, 8663, 1994
  • 15. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys., 89, 5815, 2001
  • 16. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys., 64, 701, 2001
  • 17. M. Governale, C. Ungarelli, Phys. Rev. B, 58, 7816, 1998
  • 18. S. Hackenbuchner, in: Selected Topics of Semiconductor Physics and Technology, Eds. G. Abstreiter, M.-C. Amann, M. Stutzmann, P. Vogl, Vol. 48, Walter Schottky Institute, TU Munich, Munich 2002, p. 132
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv110n202kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.