Preferences help
enabled [disable] Abstract
Number of results
2006 | 109 | 4-5 | 499-506
Article title

Topological Criticality on Brink of the Mott Transition in High-T_c Superconductors

Title variants
Languages of publication
The concept of topological excitations and the related ground state degeneracy are employed to establish an effective theory of the superconducting state evolving from the Mott insulator for high-T_c cuprates. The theory includes the effects of the relevant energy scales with the emphasis on the Coulomb interaction $U$ governed by the electromagnetic U(1) compact group. The results are obtained for the layered t-t'-t_⊥-U-J system of strongly correlated electrons relevant for cuprates. Casting the Coulomb interaction in terms of composite-fermions via the gauge flux attachment facility, we show that instanton events in the Matsubara "imaginary time", labelled by a topological winding numbers, governed by gauge flux changes by an integer multiple of 2π, are essential configurations of the phase field dual to the charge. The impact of these topological excitations is calculated for the phase diagram, which displays the "hidden" quantum critical point on verge of the Mott transition that is given by a divergence of the charge compressibility.
  • Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O.B. 1410, 50-950 Wrocław 2, Poland
  • 1. N.F. Mott, Metal-Insulator Transitions, Taylor and Francis, London 1990
  • 2. C.M. Varma, Phys. Rev. B, 55, 14554, 1997; S.H. Naqib, J.R. Cooper, J.L. Tallon, C. Panagopoulos, cond-mat/0301375
  • 3. T. Itoh, K. Takenaka, S. Uchida, Phys. Rev. Lett., 70, 3995, 1993
  • 4. L.D. Landau, E.M. Lifshitz, Statistical Physics, Pergamon Press, Oxford 1980
  • 5. K.G. Wilson, Rev. Mod. Phys., 47, 773, 1975
  • 6. P.W. Anderson, Basic Notions of Condensed Matter Physics, Benjamin, New York 1984
  • 7. J. Frohlich, U. Studer, Rev. Mod. Phys., 65, 733, 1993
  • 8. F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore 1990
  • 9. Y. Aharonov, D. Bohm, Phys. Rev., 115, 485, 1959
  • 10. O.K. Andersen, A.I. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solids, 56, 1573, 1995
  • 11. Z.Y. Weng, C.S. Ting, T.K. Lee, Phys. Rev. B, 43, 3790, 1991
  • 12. T.K. Kopeć, Phys. Rev. B, 70, 054518, 2004
  • 13. L.D. Faddeev, V.N. Popov, Phys. Lett., 25, 29, 1967
  • 14. L.S. Schulman, Techniques and Applications of Path Integration, Wiley, New York 1981
  • 15. G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun., 63, 973, 1987
  • 16. E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, Phys. Rev. Lett., 87, 047003, 2001
  • 17. N. Harima, A. Fujimori, T. Sugaya, I. Terasaki, Phys. Rev. B, 67, 172501, 2003
  • 18. X.-G. Wen, Int. J. Mod. Phys. B, 4, 239, 1990; Adv. Phys., 44, 405, 1995
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.