Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 109 | 3 | 433-440

Article title

Investigation of Nanocrystalline Materials by Perturbed Angular Correlation and Supplementing Experimental Techniques

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nanocrystalline materials were investigated by perturbedγγ-angular correlation using the radioactive probe ^{111}In. For identifying local structures observed by perturbedγγ-angular correlation various supplementing experimental techniques, like X-ray diffraction, transmission electron microscopy, absorption spectroscopy, and photoluminescence spectroscopy, were applied. In nanocrystalline TiAl alloys different crystallographic structures were observed depending on the conditions of sample treatment. Nanocrystalline Ni samples show a slightly modified local magnetic field in regions adjacent to the grain boundaries. In addition, ordered grain boundary structures were observed. Ni precipitates were identified in nanocrystalline NiCu alloys by perturbed γγ-angular correlation and preparation conditions avoiding these precipitates were found. For nanocrystalline ZnO preparation conditions were found yielding In-doped particles of good crystalline quality.

Keywords

Contributors

author
  • Technische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany

References

  • 1. H. Gleiter, Prog. Mater. Sci., 33, 223, 1989
  • 2. G. Schatz, A. Weidinger, Nuclear Condensed Matter Physics, Wiley, Chichester (England) 1995, p. 63
  • 3. Th. Wichert, E. Recknagel in: Topics in Current Physics, Ed. U. Gonser, Vol. 40, Berlin 1986, p. 317
  • 4. Th. Wichert, in: Identification of Defects in Semiconductors, Ed. M. Stavola, Academic Press, London 1999, p. 297
  • 5. J. Fan, G.S. Collins, Hyp. Int., 79, 745, 1993
  • 6. St. Lauer, Z. Guan, H. Wolf, Th. Wichert, J. Mater. Res., 17, 2130, 2002
  • 7. H. Natter, M. Schmelzer, R. Hempelmann, J. Mater. Res., 13, 1186, 1998
  • 8. St. Lauer, Z. Guan, H. Wolf, H. Natter, M. Schmelzer, R. Hempelmann, Th. Wichert, Nanostruct. Mater., 12, 955, 1999
  • 9. I. Kaur, W. Gust, L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart 1989, p. 1003
  • 10. Z. Guan, H. Wolf, X. Li, Th. Wichert, Hyp. Int., 136/137, 281, 2001; Z. Guan, H. Wolf, X. Li, Th. Agne, Th. Wichert, in preparation for publication
  • 11. K.L. Merkle, J.F. Reddy, C.L. Willy, D.J. Smith, Phys. Rev. Lett., 59, 2887, 1987
  • 12. H. Wolf, Z. Guan, St. Lauer, H. Natter, M. Schmelzer, R. Hempelmann, Th. Wichert, J. Metast. Nanocryst. Mater., 8, 847, 2000
  • 13. A. Dierstein, H. Natter, F. Meyer, H.-O. Stephan, Ch. Kropf, R. Hempelmann, Scr. Mater., 44, 2209, 2001
  • 14. Th. Agne, Z. Guan, R. Hempelmann, X. Li, H. Natter, H. Wolf, Th. Wichert, Appl. Phys. Lett., 83, 1204, 2003
  • 15. H. Wolf, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-Borho, F. Meyer, M. Renn, W. Witthuhn, R. Helbig, Mater. Sci. Forum, 10-12, 863, 1986

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv109n328kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.