PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 108 | 4 | 609-634
Article title

Low-Dimensional Thermoelectricity

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Thermoelectric materials are used as solid-state heat pumps and as power generators. The low efficiency of devices based on conventional bulk thermoelectric materials confines their applications to niches in which their advantages in compactness and controllability outweigh that drawback. Recent developments in nanotechnologies have led to the development of thermoelectric nano-materials with double the efficiency of the best bulk materials, opening several new classes of applications for thermoelectric energy conversion technology. We review here first the physical mechanisms that result in the superior thermoelectric performance of low-dimensional solids, compared to bulk thermoelectric materials: they are a reduction of the lattice thermal conductivity, and an increase in the Seebeck coefficient S for a given carrier density. The second part of this review summarizes experimental results obtained on macroscopic arrays of bismuth, antimony, and zinc nanowires with diameters ranging from 200 to 7 nm. We show how size-quantization effects greatly increase S for a given carrier concentration, as long as the diameter of the nanowires remains above 9 nm, below which localization effects start dominating. In a third part, we give data on PbTe nanocomposites, particularly bulk samples containing 30~nm diameter Pb inclusions. These inclusions affect the electron scattering in such a way as to again increase the Seebeck coefficient.
Keywords
EN
Contributors
author
  • Department of Mechanical Engineering and Department of Physics, The Ohio State University, Columbus, Ohio 43202, USA
References
  • 1. M. Telkes, Int. J. Appl. Phys., 18, 1116, 1947
  • 2. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Ltd., London 1957
  • 3. A.F. Ioffe, Physics of Semiconductor, Academic Press Inc., New York 1960
  • 4. H.J. Goldsmid, Applications of Thermoelectricity, Methuen, London 1960
  • 5. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectricity, Springer-Verlag, Berlin 2000
  • 6. J.-P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, G.P. Meisner, in: Proc. 15th Int. Conf. on Thermoelectrics, Eds. T. Caillat, J.-P. Fleurial, A. Borshchevsky, IEEE catalog number 96TH8169, Piscataway (NJ) 1996, p. 91; D.T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, Phys. Rev. B, 51, 9622, 1995
  • 7. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B, 47, 12727-31, 1993
  • 8. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B, 47, 16631-4, 1993
  • 9. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature, 413, 597, 2001
  • 10. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science, 297, 2229-32, 2002
  • 11. T.C. Harman, unpublished
  • 12. J.P. Heremans, Mater. Res. Soc. Symp. Proc., 793, 3-14, 2004
  • 13. J.W. Fenton, J.S. Lee, R.J. Buist, United States Patent 4,065,936, Jan. 3, 1978
  • 14. L. Bell, in: Proc. 21st Int. Conf. on Thermoelectrics, ICT'02, Long Beach, California (USA) 2002, Eds. T. Caillat, J. Snyder, IEEE, Piscataway (NJ) 2002, p. 447
  • 15. P.E. Gray, The Dynamic Behavior of Thermoelectric Devices, Wiley, New York 1961
  • 16. M. Cutler, N.F. Mott, Phys. Rev., 181, 1336, 1969
  • 17. Equation (8.63) in N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt Rinehart and Winston, Philadelphia 1976
  • 18. A.Ya. Shik, Fiz. Tekh. Poluprovodn., 7, 261, 73, [Sov. Phys.-Semiconductors, 7, 1 87-92, 1973]
  • 19. W.F. Leonard, T.J. Martin, Jr., Electronic Structure and Transport Properties of Crystals, Krieger Publ. Co., Malabar, FL, 1979
  • 20. T.S. Stavitskaya, L.S. Stilbans, Sov. Phys. Solid State, 2, 1868, 1961
  • 21. J.-P. Issi, J.-P. Michenaud, J. Heremans, Phys. Rev. B, 14, 5156, 1976
  • 22. T.E. Humphrey, H. Linke, Phys. Rev. Lett., 94, 096601, 2005
  • 23. A. Shakouri, J.D. Bowers, Appl. Phys. Lett., 71, 1234, 1997
  • 24. J. Tauc, Photo and Thermoelectric Effects in Semiconductors, Pergamon Press, New York 1962
  • 25. Y.-M. Lin, X. Sun, M.S. Dresselhaus, Phys. Rev. B, 62, 4610, 2000
  • 26. C.F. Gallo, B.S. Chandrasekhar, P.H. Sutter, J. Appl. Phys., 34, 144, 1963
  • 27. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, J. Heremans, Phys. Rev. B, 61, 4850, 2000
  • 28. D.A. Glocker, M.J. Skove, Phys. Rev. B, 15, 608, 1977
  • 29. J.P. Heremans, C.M. Thrush, Y.-M. Lin, S.B. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield, Phys. Rev. B, 61, 2921, 2000
  • 30. C.M. Thrush, J.P. Heremans, United States Patent Number 6,159,831 (2000)
  • 31. J.P. Heremans, C.M. Thrush, D.T. Morelli, M.C. Wu, Phys. Rev. Lett., 88, 216801, 2002
  • 32. J.-P. Michenaud, J.-P. Issi, J. Phys. C, Solid State Phys., 5, 3061, 1972
  • 33. J.P. Heremans, in: Proc. 22nd Int. Conf. on Thermoelectrics, La Grande Motte (France) 2003, Eds. H. Scherrer, J.-C. Tedenac, IEEE, Piscataway (NJ) 2003, p. 324
  • 34. J.P. Heremans, C.M. Thrush, Phys. Rev. B, 59, 12579, 1999
  • 35. J. Heremans, O.P. Hansen, J. Phys. C, Solid State Phys., 12, 3483, 1979
  • 36. D. Beutler, J. Giordano, Phys. Rev. B, 38, 8, 1988
  • 37. J. Heremans, C.M. Thrush, Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, D.T. Morelli, Phys. Rev. B, 58, R10091, 1998
  • 38. J. Heremans, C.M. Thrush, Y.-M. Lin, S.B. Cronin, M.S. Dresselhaus, Phys. Rev. B, 63, 085406, 2001
  • 39. J.P. Heremans, C.M. Thrush, D.T. Morelli, M.C. Wu, Phys. Rev. Lett., 91, 076804, 2003
  • 40. J.P. Heremans, in: Thermal Conductivity 25, Eds. D.T. Morelli, C. Uher, CRC Pr Llc, Lancaster, PA 1999, p. 114
  • 41. B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids, 57, 89, 1996
  • 42. O. Rabin, Yu-Ming Lin, M.S. Dresselhaus, Appl. Phys. Lett., 79, 81, 2001
  • 43. Yu-Ming Lin, M.S. Dresselhaus, Phys. Rev. B, 68, 075304S, 2003
  • 44. G. Springholz, V. Holy, M. Pinczolits, G. Bauer, Science, 282, 734, 1998
  • 45. G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H.H. Kang, L. Salamanca-Riba, Phys. Rev. Lett., 84, 4669, 2000
  • 46. T.C. Harman, P.J. Taylor, M.P. Walsh, United States Patent Number 6,605,772 B2 (2003)
  • 47. T.C. Harman, P.J. Taylor, D.L. Spears, M.P. Walsh, J. Electron. Mater., 29, L1, 2000
  • 48. Yu.I. Ravich, B.A. Efimova, V.I. Tamarchenko, Phys. Status Solidi B, 43, 453, 1971
  • 49. J.P. Heremans, C.M. Thrush, D.T. Morelli, Phys. Rev. B, 70, 115334, 2004
  • 50. X. Shi, L. Chen, J. Yang, G.P. Meisner, Appl. Phys. Lett., 84, 2301, 2004
  • 51. A. Lasbley, R. Granger, S. Rolland, Solid State Commun., 13, 1045, 1973
  • 52. A. Guinier, Nature, 142, 569, 1938
  • 53. G.D. Preston, Nature, 142, 570, 1938
  • 54. J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys., submitted for publication
  • 55. B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA 1956
  • 56. Yu. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides, Plenum Press, New York 1970
  • 57. A. Chernik, V.I. Kaidanov, M.I. Vinogradova, N.V. Kolomoets, Sov. Phys. Semicond., 2, 645, 1968
  • 58. H. Preier, Appl. Phys., 20, 189, 1979
  • 59. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science, 303, 818, 2004
  • 60. D. Bilc, S.D. Mahanti, E. Quarez, K.-F. Hsu, R. Pcionek, M.G. Kanatzidis, Phys. Rev. Lett., 93, 146403, 2004; Bull. Am. Phys. Soc., 50, 1407, 2005
  • 61. T. Irie, T. Takahama, T. Ono, Jap. J. Appl. Phys., 2, 72, 1963
  • 62. F.D. Rosi, J.P. Dismukes, E.F. Hockings, Electrical Eng., p. 450 (June 1960)
  • 63. R.W. Armstrong, J.W. Faust, W.A. Tiller, J. Appl. Phys., 31, 1954, 1960
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv108n406kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.