Journal
Article title
Title variants
Languages of publication
Abstracts
We report results of EPR measurements of activated carbon fibers. Experiments made for pristine activated carbon fibers and activated carbon fibers with adsorbed molecules (CCl_4, C_6H_5NO_2, and H_2O) confirmed the localized character of paramagnetic centers observed in the system. Pristine activated carbon fibers are characterized by single Lorentzian line. Broader component of EPR signal appears when guest molecules are adsorbed in nanopores. The strongest localization is observed for water-filled activated carbon fibers nanopores (with hydrophobic pore walls) where changes in distance between nanographite particles were monitored by the g-shift to higher values. This process is related to stronger spin-orbit interaction of electrons trapped at nanographite particles compressed by guest molecules.
Discipline
- 73.20.-r: Electron states at surfaces and interfaces
- 74.78.Na: Mesoscopic and nanoscale systems
- 73.22.-f: Electronic structure of nanoscale materials and related systems
- 42.81.Uv: Fiber networks(see also 42.79.Sz Optical communication systems, multiplexers, and demultiplexers)
- 76.30.-v: Electron paramagnetic resonance and relaxation(see also 33.35.+r Electron resonance and relaxation in atomic and molecular physics; 87.80.Lg Magnetic and paramagnetic resonance in biological physics)
Journal
Year
Volume
Issue
Pages
339-343
Physical description
Dates
published
2005-08
received
2005-04-24
Contributors
author
- Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
author
- Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
- 1. A.M. Rao, A.W.P. Fung, M.S. Dresselhaus, M. Endo, J. Mater. Res., 7, 1788, 1992
- 2. A.W.P. Fung, A.M. Rao, K. Kuriyama, M.S. Dresselhaus, G. Dresselhaus, M. Endo, N. Shindo, J. Mater. Res., 8, 489, 1993
- 3. R. Radhakrishnan, K.E. Gubbins, M. Śliwińska-Bartkowiak, Phys. Rev. Lett., 89, 076101, 2002
- 4. T.L. Chu, G.E. Pake, D.E. Paul, J. Townsend, S.I. Weissman, J. Phys. Chem., 57, 504, 1953
- 5. H. Sato, N. Kawatsu, T. Enoki, M. Endo, R. Kobori, S. Maruyama, K. Kaneko, Solid State Commun., 125, 641, 2003
- 6. N. Naguib, H. Ye, Y. Gogotsi, A.G. Yazicioglu, C.M. Megaridis, M. Yoshimura, Nano Lett., 4, 2237, 2004
- 7. J. Stankowski, L. Piekara-Sady, W. Kempiński, O. Huminiecki, P.B. Szczaniecki, Full. Sci. Technol., 5, 1203, 1997
- 8. A.I. Shames, A.M. Panich, W. Kempiński, A.E. Alexenskii, M.V. Baidakova, A.T. Dideikin, V.Y. Osipov, V.I. Siklitski, E. Osawa, M. Ozawa, J. Phys. Chem. Solids, 63, 1993, 2002
- 9. W. Kempiński, P. Scharff, J. Stankowski, L. Piekara-Sady, Z. Trybula, Physica C, 274, 232, 1997
- 10. M. Kempiński, M. Śliwińska-Bartkowiak, W. Kempiński, Mol. Phys. Rep., 37, 136, 2003
- 11. M. Kempiński, M. Śliwińska-Bartkowiak, W. Kempiński, in: Nonlinear Dielectric Phenomena in Complex Liquids, Ed. S.J. Rzoska, V.P. Zhelezny, Kluwer Academic Publishers, 2004, p. 387
- 12. J. Stankowski, L. Piekara-Sady, W. Kempiński, Appl. Magn. Res., 19, 539, 2000
- 13. G. Wagoner, Phys. Rev., 118, 647, 1960
- 14. M. Kempiński, in preparation
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv108n215kz