PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 108 | 1 | 33-46
Article title

^1H NMR and Rheological Studies of the Calcium Induced Gelation Process in Aqueous Low Methoxyl Pectin Solutions

Content
Title variants
Languages of publication
EN
Abstracts
EN
The ^1H NMR relaxometry in combination with water proton spin-spin relaxation time measurements and rheometry have been applied to study the ionic gelation of 1% w/w aqueous low methoxyl pectin solution induced by divalent Ca^{2+} cations from a calcium chloride solution. The model-free approach to the analysis of ^1H NMR relaxometry data has been used to separate the information on the static (β) and dynamic (〈τ_c〉) behaviour of the systems tested. The ^1H NMR results confirm that the average mobility of both water and the pectin molecules is largely dependent on the concentration of the cross-linking agent. The character of this dependency (β,〈τ_c〉 and T_2 vs. CaCl_2 concentration) is consistent with the two-stage gelation process of low methoxyl pectin, in which the formation of strongly linked dimer associations (in the range of 0-2.5 mM CaCl_2) is followed by the appearance of weak inter-dimer aggregations (for CaCl_2 ≥ 3.5 mM). The presence of the weak gel structure for the sample with 3.5 mM CaCl_2 has been confirmed by rheological measurements. Apart from that, the T_1 and T_2 relaxation times have been found to be highly sensitive to the syneresis phenomenon, which can be useful to monitor the low methoxyl pectin gel network stability.
Keywords
Contributors
author
  • Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
  • 1. M.A.V. Axelos, J.-F. Thibault, in: The Chemistry and Technology of Pectin, Ed. R.H. Walter, Academic Press, New York 1991, p. 109
  • 2. M.C. Jarvis, D.C. Apperley, Carbohydr. Res., 275, 131, 1995
  • 3. C. Garnier, M.A.V. Axelos, J.-F. Thibault, Carbohydr. Res., 240, 219, 1993
  • 4. G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, FEBS Lett., 32, 195, 1973
  • 5. I. Braccini, S. Perez, Biomacromolecules, 2, 1089, 2001
  • 6. P.M. Gilsenan, R.K. Richardson, E.R. Morris, Carbohydr. Polym., 41, 339, 2000
  • 7. D.A. Powell, E.R. Morris, M.J. Gidley, D.A. Rees, J. Mol. Biol., 155, 517, 1982
  • 8. A.H. Clark, S.B. Ross-Murphy, Adv. Polym. Sci., 83, 192, 1987
  • 9. M.A.V. Axelos, M. Kolb, Phys. Rev. Lett., 64, 1457, 1990
  • 10. D. Durand, C. Bertrand, A.H. Clark, A. Lips, Int. J. Biol. Macromol., 12, 14, 1990
  • 11. J.A. Lopes da Silva, M.P. Goncalves, J.L. Doublier, M.A.V. Axelos, Polymer Gels and Networks, 4, 65, 1996
  • 12. S.M. Cardoso, M.A. Coimbra, J.A. Lopes da Silva, Food Hydrocolloids, 17, 801, 2003
  • 13. M. Marudova, N. Jilov, Journal of Food Engineering, 59, 177, 2003
  • 14. M.A.K. Williams, R.D. Keenan, T.K. Halstead, Food Hydrocolloids, 12, 89, 1998
  • 15. W.L. Kerr, L. Wicker, Carbohydr. Polym., 42, 133, 2000
  • 16. C.R.F. Grosso, P.A. Bobbio, C. Airoldi, Carbohydr. Polym., 41, 421, 2000
  • 17. C. Rosenbohm, I. Lundt, T.M.I.E. Christensen, N.W.G. Young, Carbohydr. Res., 338, 637, 2003
  • 18. M. Dobies, M. Kozak, S. Jurga, Solid State Nucl. Magn. Reson., 25, 188, 2004
  • 19. J. Narayanan, V.W. Deotare, R. Bandyopadhyay, A.K. Sood, J. Colloid, Interface Sci., 245, 267, 2002
  • 20. C. Lofgren, P. Walkenstrom, A.M. Hermansson, Biomacromolecules (2002)
  • 21. R. Kimmich, E. Anoardo, Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 257, 2004
  • 22. K. Hallenga, S.H. Koenig, Biochemistry, 15, 4225, 1976
  • 23. F. Winter, R. Kimmich, Biochim. Biophys. Acta, 719, 292, 1982
  • 24. S. Conti, Mol. Phys., 59, 449, 1986
  • 25. B. Halle, H. Johannesson, K. Venu, J. Magn. Reson., 135, 1, 1998
  • 26. I. Bertini, M. Fragai, C. Luchinat, G. Parigi, Magn. Reson. Chem., 38, 543, 2000
  • 27. F. Berti, P. Costantino, M. Fragai, C. Luchinat, Biophys. J., 85, 3, 2004
  • 28. S. Conti, Mol. Phys., 59, 483, 1986
  • 29. J. Bodurka, R.-O. Seitter, R. Kimmich, A. Gutsze, J. Chem. Phys., 107, 5621, 1997
  • 30. P.S. Belton, Int. J. Biol. Macromol., 21, 81, 1997
  • 31. B.P. Hills, K.M. Wright, P.S. Belton, Mol. Phys., 67, 1309, 1989
  • 32. B.P. Hills, K.M. Wright, P.S. Belton, Mol. Phys., 67, 193, 1989
  • 33. B.P. Hills, K.M. Wright, P.S. Belton, Mol. Phys., 67, 903, 1989
  • 34. B.P. Hills, S.F. Takacs, P.S. Belton, Mol. Phys., 67, 919, 1989
  • 35. B.P. Hills, C. Cano, P.S. Belton, Macromolecules, 24, 2944, 1991
  • 36. B.P. Hills, Mol. Phys., 76, 489, 1992
  • 37. Q. Zhang, S. Matsukawa, T. Watanabe, Food Hydrocolloids, 18, 441, 2004
  • 38. P. McConville, J.M. Pope, Polymer, 42, 3559, 2001
  • 39. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford 1994, p. 264
  • 40. M.D. Walkinshaw, S. Arnott, J. Mol. Biol., 153, 1075, 1981
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv108n104kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.