Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 107 | 6 | 883-894

Article title

Fluorescence Decay Heterogeneity Model Based on Electron Transfer Processes in an Enzyme-Ligand Complex

Content

Title variants

Languages of publication

EN

Abstracts

EN
The models are described for complex fluorescence decay of tyrosine in proteins involving continuous distribution of fluorescence lifetimes and electron transfer processes. We introduce the analytical decay function with a power-like term, which provides good fits to highly complex fluorescence decays. Moreover, the power-like term in the proposed decay functions is a manifestation of so-called Tsallis nonextensive statistics and is suitable for description of the systems with long-range interactions, memory effect, as well as with fluctuations of the characteristic lifetime of fluorescence. The proposed decay functions were applied to analysis of fluorescence decays of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase from E. coli, free in aqueous solution and in the complex with formycin A (an inhibitor) and orthophosphate (a co-substrate), and demonstrated that both models reflect the enzyme-ligand interactions. Direct measure of heterogeneity of the enzyme systems is provided by a variance of fluorescence lifetime distribution. The possible number of deactivation channels and excited state mean lifetime can be easily derived without a priori knowledge of the complexity of studied system.

Keywords

EN

Contributors

author
  • University of Warsaw, Institute of Experimental Physics, Department of Biophysics, Żwirki i Wigury 93, 02-089 Warsaw, Poland
author
  • University of Warsaw, Institute of Experimental Physics, Department of Biophysics, Żwirki i Wigury 93, 02-089 Warsaw, Poland

References

  • 1. C. Tsallis, Braz. J. Phys., 29, 1, 1999
  • 2. C. Tsallis, Phys. World, 10, 42, 1997
  • 3. C. Tsallis, J. Stat. Phys., 52, 479, 1988, For updated bibliography on this subject see http://tsallis.cat.cbpf.br/biblio.htm cf. also Special issue of Braz. J. Phys., 29, 1999, available at http://sbf.if.usp.br/bjp/Vol29/Num1/index.htm
  • 4. H. Frauenfelder, P.G. Wolynes, R.H. Austin, Rev. Mod. Phys., 71, S419, 1999
  • 5. J. Wlodarczyk, B. Kierdaszuk, Chem. Phys., 297, 139, 2004
  • 6. J.R. Lakowicz, Photochem. Photobiol., 72, 421, 2000
  • 7. J.B.A. Ross, H.R. Wyssbrod, R.A. Porter, G.P. Schwartz, C.A. Michaels, W.R. Laws, Biochem., 31, 1585, 1992
  • 8. J.B.A. Ross, W.R. Laws, K.W. Rousslang, H.R. Wyssbrod, in: Topics in Fluorescence Spectroscopy, Ed. J.R. Lakowicz, Vol. 3, Plenum Press, New York 1992, p. 1
  • 9. J.B.A. Ross, W.R. Laws, A. Buku, J.C. Sutherland, H.R. Wyssbrod, Biochemistry, 25, 599, 1986
  • 10. B.S. Hudson, J.M. Huston, G. Soto-Campos, J. Phys. Chem., 103, 2227, 1999
  • 11. J.R. Alcala, E. Gratton, F.G. Prendergast, Biophys. J., 51, 925, 1987
  • 12. A.G. Szabo, T.M. Stepanik, D.M. Wayner, N.M. Young, Biophys. J., 41, 233, 1983
  • 13. I. Gryczynski, W. Wiczk, M.L. Johnson, J.R. Lakowicz, Biophys. Chem., 32, 173, 1988
  • 14. A.S. Ladokhin, S.H. White, Biophys. J., 81, 1825, 2001
  • 15. P.R. Callis, Methods Enzymol., 278, 113, 1997
  • 16. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publisher, New York 1999, p. 130
  • 17. M.L. Mehta, Random Matrices, Academic Press, New York 1991
  • 18. G. Wilk, Z. Wlodarczyk, Phys. Lett. A, 290, 55, 2001
  • 19. J. Wlodarczyk, B. Kierdaszuk, Biophys. J., 85, 589, 2003
  • 20. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett., 84, 2770, 2000
  • 21. G. Careri, P. Fasella, E. Gratton, Ann. Rev. Biophys. Bioeng., 8, 69, 1979
  • 22. M. Karplus, J.A. McCammon, Ann. Rev. Biochem., 53, 263, 1983
  • 23. A. Ababou, E. Bombarda, Protein Sci., 10, 2102, 2001
  • 24. E.J. Milner-White, Protein Sci., 6, 2477, 1997
  • 25. Y. Chen, M.D. Barkley, Biochemistry, 37, 9976, 1998
  • 26. R. Richert, H.J. Bassler, Chem. Phys., 84, 3567, 1986
  • 27. R.P. Parson, R. Kopelman, J. Chem. Phys., 82, 3692, 1985
  • 28. A. Blumen, J. Klafter, G. Zumofen, in: Fractals in Physics, Eds. L. Pietronero, E. Tosatti, Elsevier, Amsterdam 1986, p. 399
  • 29. B. Kierdaszuk, A. Modrak-Wójcik, J. Wierzchowski, D. Shugar, Biochim. Biophys. Acta, 1476, 109, 2000
  • 30. J.R. Lakowicz, B.P. Maliwal, J. Biol. Chem., 258, 4794, 1983
  • 31. B. Kierdaszuk, in: Fluorescence Spectroscopy, Imaging and Probes. New Tools in Chemical, Physical and Life Sciences, Eds. R. Kraayenhof, A.J.W.G. Visser, H.C. Gerritsen, Vol. 2, Springer-Verlag, Heidelberg 2000, p. 277
  • 32. J. Wlodarczyk, G. Stoychev-Galitonov, B. Kierdaszuk, Eur. Biophys. J., 33, 377, 2004
  • 33. K.C. Benny Lee, J. Siegel, S.E.D. Webb, S. Leveque, M.J. Cole, R. Jones, K. Dowling, M.J. Lever, P.M.W. French, Biophys. J., 81, 1265, 2001

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv107n606kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.