Preferences help
enabled [disable] Abstract
Number of results
2005 | 107 | 5 | 784-791
Article title

Calculation of Positron Response from Embedded Nanoparticles

Title variants
Languages of publication
Nanoparticles embedded in a matrix can trap positrons under certain conditions. In such cases nanoparticles can be effectively studied by means of positron annihilation because positron annihilation characteristics contain information related to nanoparticles' electronic and atomic structure. Of great importance is to calculate the positron response from such nanoparticles. Then, nanoparticles can, in principle, be identified by comparing the measured and calculated positron annihilation response. For this purpose we present an efficient computational method based on the well-known atomic superposition technique. This method is explained in detail, justified on the basis of first principles calculations, and applied to Cu nanoparticles embedded in the Fe matrix.
  • Department of Low Temperature Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
  • 1. V.L. Sedov, V.A. Teimurazova, K. Berndt, Phys. Lett. A, 33, 319, 1970
  • 2. M.J. Stott, P. Kubica, Phys. Rev. B, 11, 1, 1975
  • 3. M.J. Puska, P. Lanki, R.M. Nieminen, J. Phys., Condens. Matter, 1, 6081, 1989
  • 4. R. Saniz, B. Barbiellini, A. Denison, Phys. Rev. B, 65, 245310, 2002
  • 5. J. Kuriplach, F. Becvár, J. Cizek, I. Procházka, Mater. Sci. Forum, 445-446, 132, 2004
  • 6. M.J. Puska, R.M. Nieminen, J. Phys. F, Metal Phys., 13, 333, 83; A.P. Seitsonen, M.J. Puska, R.M. Nieminen, Phys. Rev. B, 51, 14057, 1995
  • 7. A. Bharathi, B. Chakraborty, J. Phys. F, Metal Phys., 18, 363, 1988
  • 8. Y. Nagai, M. Hasegawa, Z. Tang, A. Hempel, K. Yubuta, T. Shimamura, Y. Kawazoe, A. Kawai, F. Kano, Phys. Rev. B, 61, 6574, 2000
  • 9. See, e.g., G.R. Odette, G.E. Lucas, J. Miner. Met. Mater. Soc., 53, 18, 2001; L. Malerba, E. van Walle, C. Domain, S. Jumel, J.-C. van Duysen, in: Proc. 10th Intern. Conf. on Nuclear Engineering (ICONE10), The American Society of Mechanical Engineers, New York 2002, paper no. 22260
  • 10. For a recent review, see O.K. Andersen, O. Jepsen, M. Sob, in: Electronic Band Structure and its Applications, Ed. M. Yussouff, Springer Verlag, Heidelberg 1987, p. 1
  • 11. D.W. Gidley, W.E. Frieze, Phys. Rev. Lett., 60, 1193, 1988; M. Jibaly, A. Weiss, A.R. Koymen, D. Mehl, L. Stiborek, C. Lei, Phys. Rev. B, 44, 12166, 1991
  • 12. B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B, 53, 16201, 1996
  • 13. G. Kresse, J. Hafner, Phys. Rev. B, 47, 558, 1993; ibid., 49, 14251, 1994; G. Kresse, J. Furthmuller, Comput. Mat. Sci., 6, 15, 1996; G. Kresse, J. Furthmuller, Phys. Rev. B, 54, 11169, 1996
  • 14. P.E. Blochl, Phys. Rev. B, 50, 17953, 1994; G. Kresse, D. Joubert, Phys. Rev. B, 59, 1758, 1999
  • 15. J. Kuriplach, S. Van Petegem, K. Verheyen, L. Malerba, A. Almazouzi, Ref. [19], p. 9
  • 16. J. Kuriplach, A.L. Morales, C. Dauwe, D. Segers, M. Sob, Phys. Rev. B, 58, 10475, 1998
  • 17. S. Van Petegem, J. Kuriplach, H. Van Swygenhoven, R. Meyer, C. Dauwe, D. Segers, Mater. Sci. Forum, 445-446, 204, 2004
  • 18. See, e.g., Modeling and Simulating Materials Nanoworld, in series Advances in Science and Technology, Vol. 44, Eds. P. Vincenzini, F. Zerbetto, Techna Group, Faenza 2004
  • 19. K. Verheyen, A. Almazouzi, C. Domain, L. Malerba, J. Kuriplach, S. Van Petegem, to be published
  • 20. Y. Nagai, M. Murayama, Z. Tang, T. Nonaka, K. Hono, M. Hasegawa, Acta Mater., 49, 913, 2001
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.