PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 107 | 4 | 576-585
Article title

Investigation of Electron-Positron Correlations by Monte Carlo Simulation

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Earlier theoretical studies, as well as recent calculations of positron annihilation rates in metals, show that some basic problems concerning electron-positron (e-p) interaction have not been solved satisfactorily, even for homogeneous media (the electron gas). In turn, the "computer experiments" e.g. quantum Monte Carlo simulations applied to these problems by several authors yielded only fragmentary, inaccurate and even incorrect results for smaller electron densities. It is shown in the present paper that the quantum Monte Carlo method may be useful in investigations of positron interactions with electrons. Reasonable annihilation rates have been obtained owing to appropriate construction of the trial function and taking into account the 3-particle correlations (i.e. dependence of the electron-electron (e-e) interaction on the distance from the positron). Moreover, the method of "exact determination" (without any fitting) of positron annihilation rates on the basis of the variational trial function was proposed. One also found the way of calculating the momentum dependent enhancement factors, the quantities not achievable within the Monte Carlo method until now.
Keywords
EN
Contributors
author
  • W. Trzebiatowski Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
References
  • 1. H. Stachowiak, E. Boroński, http:/aps.arxiv.org/abs/cond- mat/0402478, to be published
  • 2. H. Stachowiak, E. Boroński, A.A. Saad, in: Proc. 33 Polish Seminar on Positron Annihilation (PSPA-33), Turawa (Poland) 2001, Ed. K. Jerie, University of Opole, University of Wroclaw, Opole 2001, p. 107
  • 3. J. Arponen, E. Pajanne, Ann. Phys. (New York), 121, 343, 1979
  • 4. H. Stachowiak, Phys. Rev. B, 41, 12522, 1990
  • 5. A. Rubaszek, H. Stachowiak, Phys. Rev. B, 38, 3846, 1988
  • 6. V. Apaja, S. Denk, E. Krotscheck, Phys. Rev. B, 68, 195118, 2003
  • 7. L. Lantto, Phys. Rev. B, 36, 5160, 1987
  • 8. E. Boroński, R.M. Nieminen, Phys. Rev. B, 34, 3820, 1986
  • 9. D.M. Ceperley, M.H. Kalos, in: Monte Carlo Methods in Statistical Physics, Ed. K. Binder, Springer-Verlag, 1979
  • 10. C.J. Umrigar, K.J. Runge, M.P. Nightingale, in: Monte Carlo Methods in Theoretical Physics, Eds. S. Caracoiolo, A. Fabrocini, Editrice, Pisa 1990
  • 11. G. Ortiz, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 1992, unpublished
  • 12. L. Gilgien, Ph.D. thesis, Université de Genève, 1997, unpublished
  • 13. L.M. Fraser, Ph.D. thesis, The Blackett Laboratory, University of London, 1995 (www.sst.ph.ic.ac.uk/research/theses/L.M.Fraser.pdf)
  • 14. E. Boroński, S. Siljamaki, in: Proc. 34 Polish Seminar on Positron Annihilation (PSPA-34), Turawa (Poland) 2002, Ed. K. Jerie, University of Opole, University of Wroclaw, Opole 2002, p. 5
  • 15. Xi Lin, H. Zhang, A.M. Rappe, J. Chem. Phys.. 112. 2650, 2000
  • 16. A. Harju, B. Barbiellini, S. Siljamaki, R.M. Nieminen, G. Ortiz, Phys. Rev. Lett., 79, 1173, 1997
  • 17. G. Ortiz, P. Ballone, Phys. Rev. B, 50, 1391, 1994
  • 18. T. Kato, Commun. Pure Appl. Math., 10, 151, 1957
  • 19. W.H. Young, Phys. Rev., 129, 2019, 1963
  • 20. C.H. Leung, M.J. Stott, C.O. Almblath, Phys. Lett. A, 57, 26, 1976
  • 21. G.G. Ryzhikh, J. Mitroy, J. Phys. B, 32, 4051, 1999
  • 22. S. Kahana, Phys. Rev., 129, 1622, 1963
  • 23. J. Arponen, E. Pajanne, J. Phys. C, 12, 3013, 1979
  • 24. E. Daniel, S. Vosko, Phys. Rev., 120, 2041, 1960
  • 25. J.P. Carbotte, S. Kahana, Phys. Rev. A, 139, 213, 1965
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv107n405kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.