Preferences help
enabled [disable] Abstract
Number of results
2005 | 107 | 4 | 554-561
Article title

f-Electron Behavior in Rare Earth Based Systems: Localization or Itinerancy?

Title variants
Languages of publication
Measurement of the two-dimensional angular correlation of the electron-positron annihilation radiation complemented with ab initio calculations can provide decisive information about the character of the f-electrons in rare earth compounds. We provide examples of f-electron localized and f-electron itinerant systems, respectively. (i) In the case of the antiferromagnetic heavy fermion and superconductor CeIn_3 the multisheet Fermi surface, reconstructed from our measurements in the paramagnetic phase, agrees closely with the predictions of band structure calculations regarding the Ce 4f electrons as fully localized. (ii) On the other hand, our studies of the antiferromagnet actinide based UGa_3 in the paramagnetic phase, compared with calculations which include the effects due to the non-uniform positron density and the electron-positron correlations, produce a substantial evidence that an unconstrained 5f-electron itinerant description applies.
  • ENEA, Via Don Fiammelli 2, 40129 Bologna, Italy
  • Department of Physics, University of California Riverside, Riverside CA 92521, USA
  • ENEA, Via Don Fiammelli 2, 40129 Bologna, Italy
  • Department of Electronic Structures, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
  • ENEA, Via Don Fiammelli 2, 40129 Bologna, Italy
  • Trzebiatowski Institute of Low Temperature and Structure Research, P.O. Box 937, Wrocław, Poland
  • 1. See, for examples, A.J. Freeman, Physica B, 130, 1, 1985; Y. Onuki, A. Hasegawa, Handbook on Physics and Chemisrty of Rare Earth, Eds. Karl A. Gschneider Jr., Le Roy Eyring, Vol. 20, North-Holland Publ., Amsterdam 1995, ch. 135 and references therein
  • 2. See for example, M. Biasini, G. Ferro, A. Czopnik, Phys. Rev. B, 68, 094513, 2003
  • 3. A.L. Cornelius, A.J. Arko, J.L. Sarrao, J.D. Thompson, M.F. Hundley, C.H. Booth, N. Harrison, P.N. Oppeneer, Phys. Rev. B, 59, 14473, 1999
  • 4. D. Aoki, N. Suzuki, K. Miyake, Y. Inada, R. Settai, K. Sugiyama, E. Yamamoto, Y. Haga, Y. Onuki, T. Inoue, K. Kindo, H. Sugawara, H. Sato, H. Yamagami, J. Phys. Soc. Jpn., 70, 538, 2001
  • 5. H. Kumigashira, T. Ito, A. Ashihara, H.-D. Kim, H. Aoki, T. Suzuki, H. Yamagami, T. Takahashi, A. Ochiai, Phys. Rev. B, 61, 15707, 2000
  • 6. F.M. Grosche, I.R. Walker, S.R. Julian, N.D. Mathur, D.M. Freye, M.J. Steiner, G.G. Lonzarich, J. Phys., Condens. Matter, 13, 2845, 2001 and references therein
  • 7. S. Berko, in: Proc. Int. School Phys. Enrico Fermi, Eds. W. Brandt, A. Dupasquier, North-Holland Publ. Co., Amsterdam 1983, p. 64
  • 8. D.G. Lock, V.H. Crisp, R.N. West, J. Phys. F, 3, 561, 1973
  • 9. J.H. Kaiser, R.N. West, N. Shiotani, J. Phys. F, 16, 1307, 1986
  • 10. E. Boronski, R.M. Nieminen, Phys. Rev. B, 34, 3820, 1986
  • 11. M. Sob, H. Sormann, J. Kuriplach, Adv. Quantum Chem., 42, 77, 2003
  • 12. A. Rubaszek, Z. Szotek, W.M. Temmermann, Phys. Rev. B., 65, 125104, 2002
  • 13. G. Kontrym-Sznajd, E. Jozefczuk, Mater. Sci. Forum, 255-257, 754, 1997
  • 14. J. Rusz, M. Biasini, A. Czopnik, Phys. Rev. Lett., 93, 156405, 2004
  • 15. P. Blaha, K. Schwartz, J. Luitz, WIEN2k, Tech. Universitat Wien, Wien 2001, ISBN 3-9501031-1-2
  • 16. J.M. Lawrence, M. Shapiro, Phys. Rev. B, 22, 4379, 1980
  • 17. M. Biasini, G. Ferro, G. Kontrym-Sznajd, A. Czopnik, Phys. Rev. B, 66, 075126, 2002
  • 18. D. Kaczorowski, R. Hauser, A. Czopnik, Physica B, 230, 35, 1997
  • 19. M. Biasini, G. Kontrym-Sznajd, M.A. Monge, M. Gemmi, A. Czopnik, A. Jura, Phys. Rev. Lett., 86, 4612, 2001
  • 20. G. Zwicknagl, A.N. Yaresko, P. Fulde, Phys. Rev. B, 65, 081103(R), 2003
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.