Journal
Article title
Title variants
Languages of publication
Abstracts
Over the last few years we have developed a new method to control single-electrons by isolating and moving them through a submicron width channel formed in a GaAs/AlGaAs heterostructure using a surface acoustic wave. The acoustic wave acts to push electrons through the depleted submicron channel in packets each containing an integer number of electrons. Our primary motivation for studying this system has been to develop a new standard of dc current for metrological purposes, but our recent focus has widened to investigate the possibility of single-photon emission. Here we show new experimental results which demonstrate acoustoelectric current flow in adjacent 1D wires. These results have relevance both to the use of the system in a single-photon emission scheme, as well as in the creation of a proposed acoustoelectric quantum computer.
Discipline
- 77.65.Dq: Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics(see also 43.35.Pt Surface waves in solids and liquids—in Acoustics Appendix; for surface acoustic wave transducers, see 43.38.Rh—in Acoustics Appendix; for acousto-optical effects, see 78.20.hb, and 43.35.Sx—in Acoustics Appendix)
- 73.21.Hb: Quantum wires
- 73.50.Rb: Acoustoelectric and magnetoacoustic effects
- 72.50.+b: Acoustoelectric effects
Journal
Year
Volume
Issue
Pages
38-45
Physical description
Dates
published
2005-01
received
2004-08-22
Contributors
author
- School of Electronic and Electrical Engineering, The University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
author
- Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK
author
- Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK
author
- Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK
References
- 1. J.M. Shilton, V.I. Talyanskii, M. Pepper, D.A. Ritchie, J.E.F. Frost, C.J.B. Ford, C.G. Smith, G.A.C. Jones, J. Phys. C, 8, L531, 1996
- 2. V.I. Talyanskii, J.M. Shilton, M. Pepper, C.G. Smith, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B, 56, 15180, 1997
- 3. V.I. Talyanskii, J.M. Shilton, J. Cunningham, M. Pepper, C.J.B. Ford, C.G. Smith, E.H. Linfield, D.A. Ritchie, G.A.C. Jones, Physica B, 251, 140, 1998
- 4. J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, A. Kristensen, P.E. Lindelof, Phys. Rev. B, 62, 1564, 2000
- 5. J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, M.Y. Simmons, D.A. Ritchie, Phys. Rev. B, 60, 4850, 1999
- 6. A. Robinson, V.I. Talyanskii, M. Pepper, J. Cunningham, E.H. Linfield, Phys. Rev. B, 65, 045313, 2002
- 7. C.L. Foden, V.I. Talyanskii, G.J. Milburn, M.L. Leadbeater, M. Pepper, Phys. Rev. A, 62, 011803, 2000
- 8. C.H.W. Barnes, J.M. Shilton, A.M. Robinson, Phys. Rev. B, 62, 8410, 2000
- 9. M. Cecchini, V. Piazza, F. Beltram, M. Lazzarino, M.B. Ward, A.J. Shields, H.E. Beere, D.A. Ritchie, Appl. Phys. Lett., 82, 636, 2003
- 10. J. Ebbecke, G. Bastian, M. Blocker, K. Pierz, F.J. Ahlers, Appl. Phys. Lett., 77, 2601, 2000
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv107n104kz