Preferences help
enabled [disable] Abstract
Number of results
2005 | 107 | 1 | 14-25
Article title

High Speed Heterostructure Metal-Semiconductor-Metal Photodetectors

Title variants
Languages of publication
In this work we review the properties of a class of metal-semiconductor-metal photodetectors based on heterojunction structures. Particularly, an AlGaAs/GaAs device is detailed in which the absorption region is in the GaAs layer, and a two-dimensional electron gas is formed at the heterointerface due toδ-doping of the widegap material. This heterostructure metal-semiconductor-metal photodetector also contains an AlGaAs distributed Bragg reflector that forms a resonant cavity for detection at 850 nm. The beneficial effect of the two-dimensional electron gas in the GaAs absorption layer in terms of speed and sensitivity is demonstrated by comparing samples with and without doping in the AlGaAs layer. The design and the physical properties of the grown epitaxial structure are presented, together with the static and dynamic characteristics of the device in time domain. In particular, photocurrent spectra exhibit a 30 nm wide peak at 850 nm, and time response measurements give a bandwidth over 30 GHz. A combination of very low dark current and capacitance, fast response, wavelength selectivity, and compatibility with high electron mobility transistors makes this device suitable for a number of application areas, such as Gigabit and 10 Gigabit Ethernet, wavelength division multiplexing, remote sensing, and medical applications.
  • CNR-IMM sez. di Lecce, via Arnesano 73100 Lecce, Italy
  • Electrical and Computer Engineering Dept., Drexel University, 318 Commonwealth, Philadelphia, PA, 19104, USA
  • Electrical and Computer Engineering Dept., Drexel University, 318 Commonwealth, Philadelphia, PA, 19104, USA
  • CNR-IMM sez. di Lecce, via Arnesano 73100 Lecce, Italy
  • 1. P. Fay, C. Caneau, I. Adesida, IEEE Trans. Microw. Theory Tech., 50, 62, 2002
  • 2. A. Jayakumar, M.S. Bustos, D. Cheskis, S.J. Pietrucha, M. Bonelli, S. Al-Kuran, N. Scheinberg, IEEE J. Solid-State Circuits, 35, 1271, 2000
  • 3. M. Lang, W. Bronner, W. Benz, M. Ludwig, V. Hurm, G. Kaufel, A. Leuther, J. Rosenzweig, M. Schlechtweg, Electron. Lett., 37, 1247, 2001
  • 4. A. Strittmatter, S. Kollakowski, E. Droge, E.H. Bottcher, D. Bimberg, Electron. Lett., 32, 1231, 1996
  • 5. M.S. Unlu, S. Strite, J. Appl. Phys., 78, 607, 1995
  • 6. I. Kimukin, N. Biyikli, B. Butun, O. Aytur, M.S. Unlu, E. Ozbay, IEEE Photonics Technol. Lett., 14, 366, 2002
  • 7. I. Kimukin, E. Ozbay, N. Biyikli, T. Kartaloglu, O. Aytur, M.S. Unlu, G. Tuttle, Appl. Phys. Lett., 77, 3890, 2000
  • 8. A. Shen, H.C. Liu, M. Gao, E. Dupont, M. Buchanan, J. Ehret, G.J. Brown, F. Szmulowicz, Appl. Phys. Lett., 77, 2400, 2000
  • 9. J.H. Burroughes, IEEE Photonics Technol. Lett., 3, 660, 1991
  • 10. B. Nabet, IEEE Photonics Technol. Lett., 9, 223, 1997
  • 11. Xiying Chen, B. Nabet, F. Quaranta, A. Cola, M. Currie, Appl. Phys. Lett., 80, 3222, 2002
  • 12. Xiying Chen, B. Nabet, A. Cola, F. Quaranta, M. Currie, IEEE Electron Device Lett., 24, 312, 2003
  • 13. F. Capasso, Surf. Sci., 142, 513, 84
  • 14. F. Capasso, A.Y. Cho, K. Mohammed, P.W. Foy, Appl. Phys. Lett., 46, 664, 85
  • 15. A. Anwar, B. Nabet, IEEE Trans. Microw. Theory Tech., 50, 68, 2002
  • 16. B. Nabet, A. Cola, F. Quaranta, M. Cesareo, R. Rossi, R. Fucci, A. Anwar, Appl. Phys. Lett., 77, 4007, 2000
  • 17. J.P. Bergman, Q.X. Zhao, P.O. Holtz, B. Monemar, M. Sundaram, J.L. Merz, A.C. Gossard, Phys. Rev. B, 43, 4771, 1991
  • 18. J.B.D. Soole, H. Schumacher, IEEE Trans. Electron Devices, 37, 2285, 1990
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.