Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2004 | 106 | 2 | 193-205

Article title

Coupling and Strain Effects in Vertically Stacked Double InAs/GaAs Quantum Dots: Tight-Binding Approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
The empirical tight-binding approach is used to study atomic-scale effects on electronic coupling in vertically stacked, self-assembled InAs/GaAs quantum dots. A model with unstrained dots is first studied to isolate the atomistic coupling effects from the strain effects. The strain effects are next considered by means of the valence force field method. Electron levels in coupled quantum dots follow closely the simple analogy of coupled dots as artificial molecules. The electron ground state of double dot has always bonding-like character. The coupling of hole states is more complicated because the coupling depends both of the hole envelope function and the atomic character of the hole state. It is shown that the character of the hole ground state of double dot changes from antibonding to bonding-like, when the distance between the dots decreases. It reorders hole levels, changes state symmetries, and makes changes in optical spectra. The calculated red-shift of the lowest transition for closely-spaced dots agrees well with experimental data. We present also some preliminary results on strain effects in such nanocrystals.

Keywords

EN

Year

Volume

106

Issue

2

Pages

193-205

Physical description

Dates

published
2004-08
received
2004-28-15

Contributors

author
  • Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland
author
  • Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland
author
  • National Institute of Standards and Technology, Gaithersburg, MD 20899-8423, USA

References

  • 1. G.S. Solomon, J.A. Trezza, A.F. Marshall, J.S. Harris, Jr., Phys. Rev. Lett., 76, 952, 1996
  • 2. P. Yu, W. Langbein, K. Leosson, J.M. Hvam, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, A.F. Tsatsul'nikov, Yu.G. Musikhin, Phys. Rev. B, 60, 16680, 1999
  • 3. B. Grandidier, Y.M. Niquet, B. Legrand, J.P. Nys, C. Priester, D. Stiévenard, J.M. Gérard, V. Thierry-Mieg, Phys. Rev. Lett., 85, 1068, 2000
  • 4. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, A. Forchel, Science, 291, 451, 2001
  • 5. G.W. Bryant, Phys. Rev. B, 40, 1620, 1989
  • 6. J.J. Palacios, P. Hawrylak, Phys. Rev. B, 51, 1769, 1995
  • 7. B. Szafran, S. Bednarek, J. Adamowski, Phys. Rev. B, 64, 125301, 2001
  • 8. A. Schliwa, O. Stier, R. Heitz, M. Grundmann, D. Bimberg, Phys. Status Solidi B, 224, 405, 2001
  • 9. L.R.C. Fonseca, J.L. Jimenez, J.P. Leburton, Phys. Rev. B, 58, 9955, 1998
  • 10. M. Korkusiński, P. Hawrylak, Phys. Rev. B, 63, 195311, 2001
  • 11. S. Taddei, M. Colocci, A. Vinattieri, P.G. Gucciardi, F. Bogani, S. Franchi, P. Frigeri, L. Lazzarini, G. Salviati, Phys. Status Solidi B, 224, 413, 2001
  • 12. A. Vasanelli, M. De Giorgi, R. Ferreira, R. Cingolani, G. Bastard, Physica E, 11, 41, 2001
  • 13. M. Tadić, F.M. Peeters, B. Partoens, K.L. Janssens, Physica E, 13, 237, 2002
  • 14. W. Sheng, J.-P. Leburton, Phys. Rev. Lett., 88, 167401, 2002
  • 15. R. Santoprete, Belita Koiller, R.B. Capaz, P. Kratzer, Q.K.K. Liu, M. Scheffler, Phys. Rev. B, 68, 235311, 2003
  • 16. P.E. Lippens, M. Lannoo, Phys. Rev. B, 41, 6079, 1989
  • 17. K. Leung, S. Pokrant, K.B. Whaley, Phys. Rev. B, 57, 12291, 1998
  • 18. G.W. Bryant, W. Jaskólski, Phys. Status Solidi B, 224, 751, 2001
  • 19. G.W. Bryant, W. Jaskólski, Physica E, 11, 72, 2001
  • 20. G.W. Bryant, W. Jaskólski, Phys. Rev. B, 67, 205320, 2003
  • 21. A. Mews, A.V. Kadavanich, U. Banin, A.P. Alivisatos, Phys. Rev. B, 53, R13242, 1996
  • 22. W. Jaskólski, G.W. Bryant, J. Planelles, M. Zieliński, Int. J. Quantum Chem., 90, 1075, 2002
  • 23. H. Döllefeld, H. Weller, A. Eychmüller, Nano Lett., 1, 267, 2001
  • 24. M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, U. Woggon, Phys. Rev. B, 60, 1504, 1999
  • 25. P. Vogl, H.P. Hjalmarson, J.D. Dow, J. Phys. Chem. Solids, 44, 365, 1983
  • 26. W.E. Arnoldi, Quart. J. Appl. Math., 9, 17, 51, Y. Saad, Numerical Methods for Large Scale Eigenvalue Problems, Halsted Press, New York 1992; R.B. Morgan, Math. Comp., 65, 1213, 1996
  • 27. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B, 59, 5688, 1999
  • 28. S. Fraga, J. Muszyńska, Atoms in External Fields, Elsevier, New York 1981
  • 29. S. Fafard, M. Spanner, J.P. McCaffrey, Z.R. Wasilewski, Appl. Phys. Lett., 76, 2268, 2000
  • 30. C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, A. Zunger, J. Appl. Phys., 83, 2548, 1998
  • 31. T. Saito, Y. Arakawa, Physica E, 15, 169, 2002

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv106n205kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.