Preferences help
enabled [disable] Abstract
Number of results
2004 | 105 | 6 | 631-636
Article title

Magnetic Specific Heat of Pb_{1-x}Eu_xTe

Title variants
Languages of publication
The temperature dependence of the magnetic specific heat was studied experimentally and theoretically in the semimagnetic semiconductor Pb_{1-x}Eu_xTe for x=0.027 and x=0.073, over the temperature range from 0.5 K to 15 K, in magnetic fields up to 2 T. In zero magnetic field at about 2 K there was a broad maximum in the magnetic specific heat, which was much higher than that predicted by the model of superexchange interaction between nearest neighbors; the maximum values increased with magnetic field. The experimental data were analyzed in the framework of a model which takes into account the spin splitting of the ground state of a single Eu2+ ion in the presence of local lattice distortions in the Pb_{1-x}Eu_xTe mixed crystal. The model describes well the experimental data, especially for lower x-values, where the contribution from singlets dominates.
Physical description
  • 1. M. Gorska, J.R. Anderson, J.L. Peng, Y. Oka, J.Y. Jen, I. Mogi, D. Ravot, Z. Golacki, Phys. Rev. B 55, 4400 (1997)
  • 2. Y. Shapira, V. Bindilatti, J. Appl. Phys. 92, 4155 (2002)
  • 3. M. Gorska, J.R. Anderson, C. Wolters, A. Lusakowski, T. Story, Z. Golacki, Phys. Rev. B 64, 115210 (2001)
  • 4. A. Lusakowski, A. Jedrzejczak, M. Gorska, V. Osinniy, M. Arciszewska, W. Dobrowolski, V. Domukhovski, B. Witkowska, T. Story, R.R. Galazka, Phys. Rev. B 65, 165206 (2002)
  • 5. S. Nagata, R.R. Galazka, D.P. Mullin, H. Akbarzadeh, G.D. Khattak, J.K. Furdyna, P.H. Keesom, Phys. Rev. B 22, 3331 (1980)
  • 6. R.R. Galazka, S. Nagata, P.H. Keesom, Phys. Rev. B 22, 3344 (1980)
  • 7. A. Twardowski, H.J.M. Swagten, W.J.M. de Jonge, M. Demianiuk, Phys. Rev. B 36, 7013 (1987)
  • 8. F. Geist, H. Pasher, G. Springholz, G. Bauer, in: Narrow Gap Semiconductors 1995. Proc. Seventh Int. Conf. on Narrow Gap Semiconductors, Ed. J.L. Reno, IOP Publishing, Bristol 1995, p. 145
  • 9. G.B. Bacskay, J. Phys. Chem. Solids 30, 713 (1969)
  • 10. S.K. Misra, Y. Chang, V. Petkov, S. Isber, S. Charar, C. Fau, M. Averous, Z. Golacki, J. Phys., Condens. Matter 7, 9897 (1995)
  • 11. H. Lettenmayr, W. Jantsch, L. Palmetshofer, Solid State Commun. 64, 1253 (1987)
  • 12. A.B. Roitsin, S.V. Plyatsko, Y.S. Grompvof, A.A. Klimov, S.K. Kadyshev, Sov. Phys. Semicond. 26, 1174 (1992)
  • 13. G. Sprinholz, in: Lead Chalcogenides: Physics and Applications, Ed. D. Khoklov, Taylor and Francis, London 2003
  • 14. H. Krenn, W. Herbst, H. Pascher, Y. Ueta, G. Sprinholz, G. Bauer, Phys. Rev. B 60, 8117 (1999)
  • 15. P. Wachter, in: Handbook on the Physics and Chemistry of Rare Earths, Eds. K.A. Gschneidner, Jr., L. Eyring, Vol. 2, North-Holland, Amsterdam 1979, p. 509
  • 16. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford 1970
  • 17. A. Lusakowski, V.E. Dugaev, unpublished
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.