Preferences help
enabled [disable] Abstract
Number of results
2004 | 105 | 6 | 537-545
Article title

Effects of Photoluminescence Polarization in Semiconductor Quantum Well Subjected to In-Plane Magnetic Field

Title variants
Languages of publication
Strong optical polarization anisotropy observed previously in the exciton photoluminescence from [100]-oriented quantum wells subjected to the in-plane magnetic field is described within microscopic approach. Developed theory involves two sources of optical polarization anisotropy. The first of them is due to correlation between ψ-functions phases of electron and heavy hole which arise owing to electron Zeeman spin splitting and joint manifestation of low-symmetrical and Zeeman interactions of heavy holes in an in-plane magnetic field. Other optical polarization anisotropy source stems from the admixture of light-holes states to heavy-holes ones by low-symmetry interactions. The heavy hole splitting caused by these interactions separately and the effects of their interference are analyzed. The domination of C_{2v} low-symmetry interaction connected with quantum wells interfaces and/or in-plane deformations takes place in relatively low magnetic field. The directions of this perturbation determine main directions of the π-periodical optical polarization anisotropy. The cubic anisotropy of valence band can add the π/2-periodical contribution to the optical polarization anisotropy. In the case of quantum wells with semimagnetic barriers the Zeeman term contribution can reach value, which dominates the C_{2v} ones, and crossover to polarization connected with magnetic field direction may be observed in low temperature.
  • Institute of Semiconductor Physics, NAS of Ukraine, 45, Prospekt Nauki, Kiev 03028, Ukraine
  • Institute of Semiconductor Physics, NAS of Ukraine, 45, Prospekt Nauki, Kiev 03028, Ukraine
  • 1. O. Krebs, P. Voisin, Phys. Rev. Lett. 77, 1829 (1996)
  • 2. Yu.G. Kusrayev, A.V. Koudinov, I.G. Aksyanov, B.P. Zakharchenya, T. Wojtowicz, G. Karczewski, J. Kossut, Phys. Rev. Lett. 82, 3176 (1999)
  • 3. A. Kudelski, A. Golnik, J.A. Gaj, F.V. Kyrychenko, G. Karczewski, T. Wojtowicz, Yu.G. Semenov, O. Krebs, P. Voisin, Phys. Rev. B 64, 045312 (2001)
  • 4. S.M. Ryabchenko, O.V. Terletskij, Yu.G. Semenov, F.V. Kyrychenko, in: Optical Properties of 2D Systems with Interacting Electrons, Eds. W. Ossau, R. Suris, Kluwer Acad., Dordrecht 2003, p. 217
  • 5. Yu.G. Semenov, S.M. Ryabchenko, Phys. Rev. B 68, 045322 (2003)
  • 6. G.E. Pikus, F.G. Pikus, Solid State Commun. 89, 319 (1994)
  • 7. Diluted Magnetic Semiconductors, Eds. J.K. Furdyna, J. Kossut, Vol. 25 of Semiconductors and Semimetals, Academic, Boston 1988
  • 8. G.L. Bir, G.E. Pikus, Symmetry and Strain Induced Effects in Semiconductors, Wiley, New York 1974
  • 9. X. Marie, T. Amand, P. Le Jeune, M. Paillard, P. Renucci, L.E. Golub, V.D. Dymnikov, E.L. Ivchenko, Phys. Rev. B 60, 5811 (1999)
  • 10. C. Hensel, K. Suzuki, Phys. Rev. Lett. 22, 838 (1969)
  • 11. E.L. Ivchenko, A.A. Toropov, P. Voisin, Fiz. Tverd. Tela 40, 1925 (1998) [Phys. Solid State 40, 1748 (1998)]
  • 12. D.R. Yakovlev, A.V. Platonov, E.L. Ivchenko, V.P. Kochereshko, C. Sas, W. Ossau, L. Hansen, A. Waag, G. Landwehr, L.W. Molenkamp, Phys. Rev. Lett. 88, 257401 (2002)
  • 13. Yu.G. Semenov, K.N. Borysenko, K.W. Kim, Phys. Rev. B 66, 113302 (2002)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.