Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2004 | 105 | 4 | 383-388

Article title

Anisotropic Transport of Electrons in ZnS

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study the anisotropic electronic transport property of ZnS-type thin-film electroluminescence displays by Monte Carlo simulation. The simulation contains an accurate and efficient description of the anisotropic band structure and various scattering mechanisms like phonon scattering and impurity scattering. The electronic transport processes in three devices with different ZnS-layer orientations are simulated. From the obtained energy population and average energy of electrons, we conclude that the 〈100〉 direction is the best for electron acceleration under high electric field. We propose that new attempts in using this direction for ZnS-layer deposition will result in an improvement of the performance of thin-film electroluminescence displays.

Keywords

EN

Year

Volume

105

Issue

4

Pages

383-388

Physical description

Dates

published
2004-04
received
2003-11-18

Contributors

author
  • Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 10044, China
  • Postdoctoral Working Station of Zhong-Huang San-Jin Ltd., District of Economy and Technology Development, Tianjin, China

References

  • 1. Y.A. Ono, Electroluminescence Display, World Scientific, Singapore 1995
  • 2. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, USA 1989
  • 3. H. Zhao, B. DalDon, S. Moehl, H. Kalt, K. Ohkawa, D. Hommel, Phys. Rev. B 67, 035306 (2003)
  • 4. E. Bringuier, J. Appl. Phys. 66, 1314 (1989)
  • 5. K. Brennan, J. Appl. Phys. 64, 4024 (1988)
  • 6. H. Zhao, S. Moehl, H. Kalt, Phys. Rev. Lett. 89, 097401 (2002)
  • 7. H. Zhao, Z. Xu, Y.S. Wang, Y.B. Hou, X.R. Xu, Displays 21, 143 (2000)
  • 8. R. Mach, G.O. Muller, J. Cryst. Growth 101, 967 (1990)
  • 9. K. Bhattacharyya, S.M. Goodnick, J.F. Wager, J. Appl. Phys. 73, 3390 (1993)
  • 10. M. Dur, S.M. Goodnick, S.S. Pennathur, J.F. Wager, M. Reigrotzki, R. Pedmer, J. Appl. Phys. 83, 3176 (1998)
  • 11. R. Bellottin, K. Brennan, R. Wang, P.P. Ruden, J. Appl. Phys. 83, 4765 (1998)
  • 12. H. Zhao, Y.S. Wang, X.R. Xu, Acta Phys. Pol. A 98, 123 (2000)
  • 13. H. Zhao, Y.S. Wang, Z. Xu, X.R. Xu, Czechoslovak J. Phys. 50, 1159 (2000)
  • 14. H. Zhao, Y.S. Wang, Z. Xu, X.R. Xu, Semicond. Sci. Technol. 14, 1098 (1999)
  • 15. H. Zhao, Y. Wang, Z. Xu, X. Xu, J. Phys., Condens. Matter 11, 2145 (1999)
  • 16. H. Zhao, Y.B. Hou, Y.S. Wang, X.R. Xu, Phys. Scr. 65, 500 (2001)
  • 17. H. Zhao, Y.S. Wang, Z. Xu, X.R. Xu, Acta Phys. Pol. A 96, 475 (1999)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv105n403kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.