PL EN


Preferences help
enabled [disable] Abstract
Number of results
2003 | 104 | 6 | 515-525
Article title

Thermopower of Molten Aluminium in Ultrasonic Field

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Temperature dependence on the liquid aluminium thermopower is reported for the range 933-1043 K. In order to highlight the ultrasonic wave effect on the thermoelectric power, the experiments were carried out under similar conditions with and without sonication. The lower values of the thermopower in sonication conditions are explained by the decrease in the melt temperature gradient and due to the specific effects of ultrasound propagation process (acoustic flow and acoustic cavitation). A functional relationship was found, Q=-A/T+BT, where A and B are positive constants. These two terms are regarded as electron-ion collisions and spatial redistribution of conduction electrons in the necessary temperature gradient. The effect of cavitation at high temperature is debated. A good agreement between the experimental data and theoretical models of the transport properties is achieved.
Keywords
EN
Year
Volume
104
Issue
6
Pages
515-525
Physical description
Dates
published
2003-12
received
2003-02-24
revised
2003-09-15
References
  • 1. J.M. Ziman, Philos. Mag., 6, 1013, 1961
  • 2. J.M. Ziman, in: The Properties of Liquid Metals, Eds. P.D. Adams, H.A. Davies, S.G. Epstein, Taylor and Francis, London 1967, p. 551
  • 3. V. Heine, I. Abarenkov, Philos. Mag., 9, 451, 1964
  • 4. A.E.O. Animalu, V. Heine, Philos. Mag., 12, 1249, 1965
  • 5. N.W. Ashcroft, J. Phys. C, 1, 232, 1968
  • 6. N.W. Ashcroft, N.D. Mermins, Solid State Physics, Saunders, Philadelphia 1988
  • 7. S. Wang, C.B. So, J. Phys. F, Met. Phys., 7, 1439, 1977
  • 8. W. Nicodemi, Metalurgia, EDIMET, Milano 1990, p. 619
  • 9. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals, Pergamon, New York 1978
  • 10. I. Takamichi, R.I.L. Guthrie, The Physical Properties of Liquid Metals, 2nd ed., Clarendon Press, Oxford Science Publication, England 1993
  • 11. L. Moraru, Czech. J. Phys., 49, 253, 1999
  • 12. C.H. Woo, S. Wang, M. Matsuura, J. Phys. F, Met. Phys., 5, 1849, 1975
  • 13. O.V. Abramov, Ultrasound in Liquid and Solid Metals, Russian Academy of Sciences, Moscow 1993 (in English)
  • 14. R.T. Beyer, A.B. Coppens, in: Proc. Int. Congress on Acoustics 5th, Ed. W.P. Mason, Academic Press, Liege 1965, p. 231
  • 15. M.B. Gitis, I.G. Mikhailov, Sov. Phys. Acoust., 12, 14, 1996, (in English)
  • 16. Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, J. Appl. Phys., 88, 5993, 2000
  • 17. P.A. Deymier, J.O. Vasseur, A. Khelif, B. Djafari-Rouhani, L. Dobrzynski, S. Raghavan, J. Appl. Phys., 88, 6821, 2000
  • 18. C.C. Church, J. Acoust. Soc. Am., 84, 1758, 1988
  • 19. G.I. Eskin, Ultrason. Sonochem., 2, S137, 1995
  • 20. K. Sarveswara Rao, K.L. Narayana, K.M. Swamy, J.S. Murty, Metall. Mater. Trans. B, 28, 721, 1977
  • 21. L. Moraru, C. Gheorghies, in: Proc. Natl. Physics Conf., Baia Mare (Romania) 1995, Inst. of Atomic Physics, Bucuresti 1995, p. 69 (in Romanian)
  • 22. M.M. Chivate, A.B. Pandit, Ultrason. Sonochem., 1, 819, 1995
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv104n601kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.