Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Product operator theory is widely used for analytical description of multiple pulse nuclear magnetic resonance experiments for weakly coupled spin systems. Distortionless enhancement by polarization transfer and subspectral editing with a multiple quantum trap NMR experiments are used for spectral assignments of ^{13}C NMR spectra in CH_n groups. First, in this study we proposed and showed theoretically that distortionless enhancement by polarization transfer and subspectral editing with a multiple quantum trap experiments can also be used for subspectral editing of ^{13}C NMR spectra when ^{13}C nuclei coupled to spin-3/2 nuclei. The product operator technique is applied for the analytical description of ^{13}C distortionless enhancement by polarization transfer and subspectral editing with a multiple quantum trap NMR spectroscopy for ^{13}CX_n~({I_X=3/2} ; n=1, 2, 3) groups.
Journal
Year
Volume
Issue
Pages
503-511
Physical description
Dates
published
2003-11
received
2003-09-08
Contributors
author
- Department of Physics, Faculty of Education, Osmangazi University, Eskişehir, Turkey
author
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
author
- Department of Physics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey
author
- Department of Physics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey
author
- Department of Physics, Faculty of Arts and Sciences, Süleyman Demirel University, Isparta, Turkey
References
- 1. D.M. Doddrell, D.T. Pegg, M.R. Bendall, J. Magn. Reson., 48, 323, 1982
- 2. H. Bildsöe, S. Dönstrup, H.J. Jakobsen, O.W. Sörensen, J. Magn. Reson., 53, 154, 1983
- 3. U.B. Sörensen, H. Bildsöe, H.J. Jakobsen, O.W. Sörensen, J. Magn. Reson., 65, 222, 1985
- 4. M.R. Bendall, D.T. Pegg, J. Magn. Reson., 59, 237, 1984
- 5. O.W. Sörensen, G.W. Eich, M.H. Levitt, G. Bodenhausen, R.R. Ernst, Prog. Nucl. Magn. Reson. Spectrosc., 16, 163, 1983
- 6. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford 1987
- 7. N. Chandrakumar, S. Subramanian, Modern Techniques in High Resolution FT NMR, Springer, New York 1987
- 8. P.J. Hore, J.A. Jones, S. Wimperis, NMR: The Toolkit, Oxford University Press, New York 2000
- 9. F.J.M. Van de Ven, C.W. Hilbers, J. Magn. Reson., 54, 512, 1983
- 10. N. Chandrakumar, J. Magn. Reson., 60, 28, 1984
- 11. I.S. Podkorytov, Concepts Magn. Reson., 9, 117, 1997
- 12. A. Gençten, T. Özdoğan, F. Köksal, Spect. Lett., 31, 981, 1988
- 13. A. Gençten, Ö. Tezel, A. Köroğlu, Appl. Magn. Reson., 20, 265, 2001
- 14. T.T. Nakashima, R.E.D. McClung, B.K. John, J. Magn. Reson., 58, 27, 1984
- 15. A. Gençten, Ö. Tezel, S. Bahçeli, Chem. Phys. Lett., 351, 109, 2002
- 16. İ. Şaka, Ö. Tezel, A. Gençten, Z. Naturforsch. A, 58, 139, 2003
- 17. J.C.P. Sanders, G.J. Schrobilgin, in: Multinuclear Magnetic Resonance in Liquids and Solids - Chemical Applications, Eds. P. Granger, R.K. Harris, Kluwer Academic, Dordrecht 1990, p. 157
- 18. J.W. Akitt, W.S. McDonald, J. Magn. Reson., 58, 401, 1984
- 19. D. Reed, Chem. Soc. Rev., 22, 109, 1993
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv104n510kz