Preferences help
enabled [disable] Abstract
Number of results
2003 | 104 | 3-4 | 281-287
Article title

Real-Space Mapping of Exciton Wave Functions in a Quantum Dot with Near-Field Optical Imaging Spectroscopy

Title variants
Languages of publication
An exciton confined within a quantum dot acts as a two-level quantum system, and is one of the most promising candidates for quantum computing and quantum information processing. The real-space optical probing of the quantum eigenstates in a single quantum dot and coupled quantum dots should be developed toward the realization of quantum photonic devices, where their wave functions are dynamically controlled by coherent optical techniques. Here we apply near-field photoluminescence imaging spectroscopy with a high spatial resolution of 30 nm to map out the centre-of-mass wave function of an exciton confined in a GaAs quantum dot. The spatial profile of the exciton emission, which reflects the shape of a monolayer-high island, differs from that of biexciton emission, due to different distributions of the polarization field for the exciton and biexciton recombinations.
Physical description
  • 1. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, G. Weimann, Phys. Rev. Lett., 73, 1138, 1994
  • 2. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Phys. Rev. Lett., 76, 3005, 1996
  • 3. G. Chen, T.H. Stievater, E.T. Batteh, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, L.J. Sham, Phys. Rev. Lett., 88, 117901-1, 2002
  • 4. T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev. Lett., 87, 133603-1, 2001
  • 5. N.H. Bonadeo, J. Erland, D. Gammon, D. Park, D.S. Katzer, D.G. Steel, Science, 282, 1473, 1998
  • 6. J.R. Guest, T.H. Stievater, X. Li, J. Cheng, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Ell, A. Thränhardt, G. Khitrova, H.M. Gibbs, Phys. Rev. B, 65, 241310-1, 2002
  • 7. G.W. Bryant, Appl. Phys. Lett., 72, 768, 1998
  • 8. C.D. Simserides, U. Hohenester, G. Goldoni, E. Molinari, Phys. Rev. B, 62, 13657, 2000
  • 9. H.F. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer, K.W. West, Science, 264, 1740, 1994
  • 10. F. Intonti, V. Emiliani, Ch. Lienau, T. Elsaesser, V. Savona, E. Runge, R. Zimmermann, R. Nötzel, K.H. Ploog, Phys. Rev. Lett., 87, 076801-1, 2001
  • 11. J.R. Guest, T.H. Stievater, Gang. Chen, E.A. Tabak, B.G. Orr, D.G. Steel, D. Gammon, D.S. Katzer, Science, 293, 2224, 2001
  • 12. K. Matsuda, T. Saiki, H. Saito, K. Nishi, Appl. Phys. Lett., 76, 73, 2000
  • 13. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, Appl. Phys. Lett., 81, 2291, 2002
  • 14. T. Saiki, K. Matsuda, Appl. Phys. Lett., 74, 2773, 1999
  • 15. Q. Wu, R.D. Grober, D. Gammon, D.S. Katzer, Phys. Rev. B, 62, 13022, 2000
  • 16. D. Gammon, E.S. Snow, D.S. Katzer, Appl. Phys. Lett., 67, 2391, 1995
  • 17. S.V. Nair, T. Takagahara, Phys. Rev. B, 55, 5153, 1997
  • 18. D.A. Kleinman, Phys. Rev. B, 28, 871, 1983
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.