Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We prepared nanoscaled particles consisting of ferromagnetic material on a nanostructured template. This nanolithographic procedure allows to fabricate high-density magnetic nanodots in a highly ordered way. For this purpose, Fe particles were grown on the c(2×2)-N/Cu(001) surface which exhibits a checkerboard-like structure. Scanning tunneling spectroscopic measurements demonstrate that the electronic properties of the areas with deposited material are identical to clean copper. Fe nanoparticles on the reconstructed patches show a significantly different electronic behavior. These observations directly hint to a covering of iron with copper on the clean surface.
Discipline
- 73.22.Dj: Single particle states
- 68.65.-k: Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties(for structure of nanoscale materials, see 61.46.-w; for magnetic properties of interfaces, see 75.70.Cn; for superconducting properties, see 74.78.-w; for optical properties, see 78.67.-n; for transport properties, see 73.63.-b; for thermal properties of nanocrystals and nanotubes, see 65.80.-g; for mechanical properties of nanoscale systems, see 62.25.-g)
- 68.37.Ef: Scanning tunneling microscopy (including chemistry induced with STM)
- 81.15.Kk: Vapor phase epitaxy; growth from vapor phase
Journal
Year
Volume
Issue
Pages
327-335
Physical description
Dates
published
2003-09/10
received
2003-07-16
Contributors
author
- Institute of Applied Physics, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
author
- Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
author
- Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
References
- 1. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science, 287, 1989, 2000
- 2. S.Y. Chou, P.R. Krauss, L. Kong, J. Appl. Phys., 79, 6101, 1996
- 3. A.D. Kent, T.M. Shaw, S. von Molnar, D.D. Awschalom, Science, 262, 1249, 1993
- 4. T. Voßmeyer, G. Reck, L. Katsikas, E.T.K. Haupt, B. Schulz, H. Weller, Science, 276, 1476, 1995
- 5. C. Teichert, J. Barthel, H.P. Oepen, J. Kirschner, Appl. Phys. Lett., 74, 588, 1999
- 6. H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature, 394, 451, 1998
- 7. B. Voigtländer, G. Meyer, N.M. Amer, Phys. Rev. B, 44, 10354, 1991
- 8. F.M. Leibsle, C.F.J. Flipse, A.W. Robinson, Phys. Rev. B, 47, 15865, 1993
- 9. S.M. Driver, J.T. Hoeft, M. Polcik, M. Kittel, R. Terborg, R.L. Toomes, J.H. Kang, D.P. Woodruff, J. Phys., Condens. Matter, 13, L601, 2001
- 10. H. Ellmer, V. Repain, S. Rousset, B. Croset, M. Sotto, P. Zeppenfeld, Surf. Sci., 476, 95, 2001
- 11. F.M. Leibsle, S.S. Dhesi, S.D. Barrett, A.W. Robinson, Surf. Sci., 317, 309, 1994
- 12. T.M. Parker, L.K. Wilson, N.G. Condon, F.M. Leibsle, Phys. Rev. B, 56, 6458, 1997
- 13. F. Komori, S. Ohno, K. Nakatsuji, J. Phys., Condens. Matter, 14, 8177, 2002
- 14. P. Finetti, V.R. Dhanak, C. Binns, K.W. Edmonds, S.H. Baker, S. Daddato, J. Electron Spectrosc. Relat. Phenom., 114-116, 251, 2001
- 15. F. Komori, K.D. Lee, K. Nakatsuji, T. Iimori, Y.Q. Cai, Phys. Rev. B, 63, 214420, 2001
- 16. J.H. Kim, K.H. Lee, G. Yang, A.R. Koymen, A.H. Weiss, Nucl. Instrum. Methods Phys. Res. B, 171, 231, 2000
- 17. M. Bode, R. Pascal, R. Wiesendanger, Surf. Sci., 344, 185, 1995
- 18. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge 1994
- 19. K. Mukai, Y. Matsumoto, K. Tanaka, F. Komori, Surf. Sci., 450, 44, 2000
- 20. K.D. Lee, T. Iimori, F. Komori, Surf. Sci., 454-456, 860, 2000
- 21. H.P. Noh, Y.J. Choi, J.Y. Park, I.C. Jeong, Y.D. Suh, Y. Kuk, J. Vac. Sci. Technol. B, 14, 1188, 1996
- 22. J.H. Kim, K.H. Lee, G. Yang, A.R. Koymen, A.H. Weiss, Appl. Surf. Sci., 173, 203, 2001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv104n303kz