Preferences help
enabled [disable] Abstract
Number of results
2003 | 103 | 2-3 | 121-131
Article title

Magnetooptics in Layered Nonlinear Structures

Title variants
Languages of publication
The magnetooptics of an asymmetric layered waveguide structure is discussed to investigate the possibility of creating new devices that combine both nonreciprocity and nonlinearity. After addressing some fundamental magnetooptic properties and the kind of materials needed, a straightforward envelope theory is given that exploits the Voigt effect instead of the more obvious Faraday effect. It is emphasised that this choice leads to desirable design features. It is proposed that the introduction of an applied magnetic field to a waveguide structure can be achieved through the use of thin current-carrying strips. It is emphasised that the strips can be arranged to any degree of complexity and that a high degree of control over spatial soliton dynamics can be achieved. Spatial soliton light beams are selected because they can be generated, within a waveguide, in a stable form. The attractive features of using the type of magnetooptic waveguide investigated here are highlighted with examples and it is concluded that the formats proposed can be used for the fully integrated isolator capacity that modern laser systems demand.
  • Photonics and Nonlinear Science Group, Joule Physics Laboratory, Institute of Materials Research, University of Salford, Salford, M5 4WT, UK
  • Photonics and Nonlinear Science Group, Joule Physics Laboratory, Institute of Materials Research, University of Salford, Salford, M5 4WT, UK
  • 1. E. Hecht, A. Zajac, Optics, Addison-Wesley, Reading 1974
  • 2. J. Petykiewicz, Wave Optics, Kluwer, Dordrecht 1992
  • 3. B.E. Saleh, M.C. Teich, Fundamentals of Photonics, Wiley, New York 1991
  • 4. I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J.J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston 1994
  • 5. N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, P. Hertel, Opt. Commun., 161, 330, 1999
  • 6. A.K. Zvezdin, V.A. Kotov, Modern Magneto-optics and Modern Magnetooptic Materials, Institute of Physics, Bristol 1997
  • 7. W. Zaets, K. Ando, IEEE Phot. Tech. Lett., 11, 185, 2001
  • 8. J. Hammer, J.H. Abeles, D.J. Channin, IEEE Phot. Tech. Lett., 9, 631, 1997
  • 9. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, A.F. Popkov, J. Lightwave Tech., 17, 1200, 1999
  • 10. A.D. Boardman, K. Xie, Phys. Rev. Lett., 76, 4591, 1995
  • 11. A.D. Boardman, K. Xie, Phys. Rev. E, 55, 1899, 1997
  • 12. A.D. Boardman, K. Xie, J. Opt. Soc. Am. B, 15, 3102, 1997
  • 13. Soliton-driven Photonics, Eds. A.D. Boardman, A.P. Sukhorukov, Kluwer, Boston 2001
  • 14. A.D. Boardman, M. Xie, J. Opt. B, Quantum Semiclass. Opt., 3, S244, 2001
  • 15. A.D. Boardman, M. Xie, J. Opt. Soc. Am. B, 19, 719, 2002
  • 16. Magnetooptics, Eds. S. Sugano, N. Kojima, Springer, Berlin 2000
  • 17. M.S. Sodha, N.C. Srivastava, Microwave Propagation in Ferrimagnetics, Plenum, New York 1981
  • 18. T. Mizumoto, H. Chihara, N. Tokui, Y. Naito, Electron. Lett., 26, 199, 1990
  • 19. T. Mizumoto, Y. Naito, IEEE Trans. MTT, 30, 922, 1982
  • 20. M. Levy, R.M. Osgood, A. Kumar, Appl. Phys. Lett., 71, 2617, 1997
  • 21. W. Hubner, Physics World, 8, 21, 1995
  • 22. G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York 1974
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.