PL EN


Preferences help
enabled [disable] Abstract
Number of results
2002 | 102 | 6 | 709-716
Article title

Ehrenfest Theorem for the Hamilton-Jacobi Equation

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
A possible way from quantum mechanics to classical mechanics can be achieved with an exponential substitution used in the Schrödinger equation, and then considering the classical limit. This gives a picture of classical fluid and an ensemble of classical trajectories. In difference from this approach to the classical limit, while utilising the same substitution, we assume a minimum uncertainty wave packet. It is shown that this approach to the classical limit of quantum mechanics yields a single trajectory traced by the centroid of the minimum uncertainty wave packet. The momentum and the centroid of such packet satisfy the classical Hamilton-Jacobi equation.
Keywords
EN
Year
Volume
102
Issue
6
Pages
709-716
Physical description
Dates
published
2002-12
received
2002-07-03
References
  • 1. D.I. Davydov, Quantum Mechanics, Pergamon, New York 1965, p. 49
  • 2. D.I. Blokhintsev, Quantum Mechanics, Reidel, Dordrecht 1964, p. 102
  • 3. L.E. Ballentine, Y.M. Yang, J.P. Zibin, Phys Rev. A, 50, 2854, 1994
  • 4. A. Messiah, Quantum Mechanics, Vol. 1, North-Holland, Amsterdam 1961, p. 222
  • 5. L.E. Ballentine, J.P. Zibin, Phys. Rev. A, 54, 3813, 1996
  • 6. L.E. Ballentine, S.M. McRae, Phys. Rev. A, 58, 1799, 1998
  • 7. L. Kocis, Acta Phys. Pol. A, 101, 213, 2002
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv102n606kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.