EN
The electronic band structure of GaAs_{1-x}N_x (x=0.016 and 0.031) and Ga_{1-x}B_xAs (x= 0.031) is studied by ab initio calculations using a supercell approach. Based on ab initio calculations and group theory we present a comprehensive analysis of the electronic structure of GaAs:N and GaAs:B alloys. In particular, we study the effective mass of conduction electrons in GaAs:N as a function of pressure and the Fermi energy. We find that the lowest conduction band is strongly non-parabolic, which leads to an increase in the effective mass with the electron energy. The rate of the increase is enhanced by the hydrostatic pressure. Theoretical results are compared to experimental data, and a qualitative agreement is found.