EN
The fluorescence quenching of a series of aromatic hydrocarbon electron donors by an electron acceptor tricyanoethylene has been observed. The quenching mechanism is consistent with the charge-transfer (or electron-transfer) mechanism, as indicated by the appearance of a new, broad, and structureless exciplex emission band. Detailed, steady-state, and time-resolved emission studies of the kinetics and thermodynamics of exciplex formation and relaxation have been performed for naphthalene-tricyanoethylene system. It was found that the kinetics of monomer-exciplex equilibrium for this system, in a non-polar solvent (n-hexane), can be described in terms of a simple two-state photokinetic scheme. Within such a scheme, under conditions of the present experiment, napthalene-tricyanoethylene system approaches the limits under which exciplex formation is very effective - it becomes exclusively diffusion-controlled and at the same time a competitive process of thermal dissociation of exciplex ceases to operate. This leads to a very rarely observed reversal of physical meaning of the decay parameters which are describing the rise and the decay of exciplex fluorescence.