PL EN


Preferences help
enabled [disable] Abstract
Number of results
2002 | 101 | 2 | 249-265
Article title

Simple Method for Calculating the Weak-Field Electron Diamagnetism in Cubic Lattices

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The idea of electron wave packets moving along closed anisotropic Fermi surfaces placed in a constant magnetic field has been applied to the calculation of the orbital magnetic moment of an individual free electron and tightly-bound s-electron in a crystal lattice. In each case the magnetic moment is obtained as a derivative of the electron energy done with respect to the strength of the magnetic field. In the next step, calculations have been extended to electron ensembles. For a free-electron ensemble a thorough calculation of the weak-field magnetic moment gives a result similar to that obtained by a well-known method developed by Landau. On the other hand, calculations done for the s-band of the tightly-bound electrons of metallic iron give an absolute value of the magnetic moment much smaller than in the free-electron case. Simultaneously, the sign of the moment is changed indicating a lowering of the iron band electron energy with magnetization.
Keywords
EN
Year
Volume
101
Issue
2
Pages
249-265
Physical description
Dates
published
2002-02
received
2001-08-13
(unknown)
2001-11-12
References
  • 1. L. Landau, Z. Phys., 64, 629, 1930
  • 2. R. Peierls, Z. Phys., 80, 783, 1933; ibid., 81, 186, 1933
  • 3. R. Peierls, Quantum Theory of Solids, Oxford University Press, New York 1955
  • 4. A.H. Wilson, Proc. Camb. Philos. Soc., 49, 292, 1953
  • 5. N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, University Press, Oxford 1936
  • 6. J. Callaway, Quantum Theory of the Solid State, 2nd ed., Academic, New York 1991
  • 7. P.G. Harper, Proc. Phys. Soc. (London) A, 68, 874, 1955
  • 8. D.R. Hofstadter, Phys. Rev. B, 14, 2239, 1976
  • 9. G.H. Wannier, Revs. Mod. Phys., 34, 645, 1962
  • 10. J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 3, McGraw-Hill, New York 1967
  • 11. J.M. Ziman, Principles of the Theory of Solids, University Press, Cambridge 1972
  • 12. S.J. Blundell, J. Singleton, Phys. Rev. B, 53, 5609, 1996
  • 13. J. Singleton, F.L. Pratt, M. Doporto, T.J.B.M. Janssen, M. Kurmoo, J.A.A.J. Perenboom, W. Hayes, P. Day, Phys. Rev. Lett., 68, 2500, 1992
  • 14. S.J. Blundell, A. Ardavan, J. Singleton, Phys. Rev. B, 55, R6129, 1997
  • 15. A. Ardavan, J.M. Schrama, S.J. Blundell, J. Singleton, W. Hayes, M. Kurmoo, P. Day, P. Goy, Phys. Rev. Lett., 81, 713, 1998
  • 16. S. Olszewski, T. Roliński, T. Kwiatkowski, Phys. Rev. B, 59, 3740, 1999
  • 17. H. Goldstein, Classical Mechanics, 2nd. ed., Addison-Wesley, Reading (Massachusetts) 1980
  • 18. W. Greiner, Classical Electrodynamics, Springer, New York 1998
  • 19. L. Onsager, Philos. Mag., 43, 1006, 1952
  • 20. C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York 1996
  • 21. J.R. Reitz, in: Solid State Physics, Eds. F. Seitz, D. Turnbull, Vol. 1, Academic, New York 1955, p. 1
  • 22. F. Stern, Phys. Rev., 116, 1399, 1959
  • 23. B.F. Ormont, Structures of Inorganic Materials, GITTL, Moscow 1950 (in Russian)
  • 24. A.M. Clogston, B.T. Matthias, M. Peter, H.J. Williams, E. Corenzwit, R.C. Sherwood, Phys. Rev., 125, 541, 1962
  • 25. H. Frohlich, Elektronentheorie der Metalle, Springer, Berlin 1936
  • 26. R. Gersdorf, in: Metallic Solid Solutions, Eds. J. Friedel, A. Guinier, Benjamin, New York 1963, p. XXVI-1
  • 27. H. Suhl, J. Phys. (Paris), 50, 2613, 1989
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv101n202kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.