PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 100 | 5 | 647-658
Article title

Infrared Synchrotron Radiation: from Condensed Matter to Biology Researches

Content
Title variants
Languages of publication
EN
Abstracts
EN
Infrared spectroscopy is probably the oldest spectroscopic method applied to investigate materials and chemico-physical phenomena. Nowadays, infrared spectroscopy represents the characterization technique most applied in the industry and in many technological processes. In the last decades a significant progress has been achieved in the use of the intense and brilliant infrared emission from electron storage rings previously used only as VUV and X-ray sources. In the infrared range the low energy of the electron beam does not affect the synchrotron radiation spectral distribution, while high current will make storage rings the most brilliant infrared sources to be used for infrared spectroscopy and micro-spectroscopy. Infrared micro-spectroscopy is a unique technique that combines microscopy and spectroscopy for purposes of micro-analysis. Spatial resolution, within a microscopic field of view, is the goal of the modern infrared micro-spectroscopy applied to condensed matter physics, materials science, biophysics, and now to medicine. Although limited in spatial resolution, infrared is able to resolve chemistry using the contrast of the absorption lines. Fourier transform-infrared micro-spectroscopy using synchrotron radiation is now able to collect data with 2-4 cm^{-1} resolution on the scale of 10-100 seconds up to an area of a few microns opening a new scenario: infrared spectroscopy of entire cells and tissue. Moreover, distributions of functional groups such as proteins, lipids, and nucleic acids can be achieved inside a single living cell with a spatial resolution of a few microns.
Keywords
Year
Volume
100
Issue
5
Pages
647-658
Physical description
Dates
published
2001-11
received
2001-05-14
References
  • 1. E.F. Nichols, Phys. Rev. B, 11, 1993
  • 2. J.A. Reffner, P.A. Martoglio, G.P. Williams, Rev. Sci. Instrum., 66, 1298, 1995
  • 3. M. Poole, in: Synchrotron Radiation and Free Electron Lasers, Ed. S. Turner, CERN 90-03, Geneve 1990, p. 306
  • 4. J.-M. Ortega, in: Accelerator-based Infrared Sources and Applications, Eds. G.P. Williams, P. Dumas, Proc. SPIE, 3153, 2, 1997
  • 5. T.I. Smith, in: Accelerator-based Sources of Infrared and Spectroscopic Applications, Eds. G.L. Carr, P. Dumas, Proc. SPIE, 3775, 46, 1999
  • 6. J.R. Stevenson, H. Ellis, R. Bartlett, Appl. Opt., 12, 2884, 1973
  • 7. R.P.S. Lobo, J.D. LaVeigne, D.H. Reitze, D.B. Tanner, G.L. Carr, Rev. Sci. Instrum., 70, 2899, 1999
  • 8. Infrared Synchrotron Radiation, Eds. P. Calvani, P. Roy, Editori Compositori, Bologna 1998
  • 9. Accelerator-based Infrared Sources and Applications, Eds. G.P. Williams, P. Dumas, Proc. SPIE, 3153, 1997
  • 10. Accelerator-based Sources of Infrared and Spectroscopic Applications, Eds. G.L. Carr, P. Dumas, Proc. SPIE, 3775, 1999
  • 11. A. Marcelli, A. Nucara, D. Cannavo', E. Burattini, P. Calvani, G. Cinque, C. Mencuccini, S. Lupi, F. Monti, in: Accelerator-based Sources of Infrared and Spectroscopic Applications, Eds. G.L. Carr, P. Dumas, Proc. SPIE, 3775, 7, 1999
  • 12. A. Dong, R.G. Messerschmidt, J.A. Refnner, Biochem. Biophys. Res. Commun., 156, 752, 1988
  • 13. D.L. Wetzel, S.M. LeVine, in: Infrared and Raman Spectroscopy of Biological Materials, Eds. H.-U. Gremlich, Bing Yan, Marcel Dekker, New York 2001, p. 101
  • 14. D.L. Wetzel, S.M. LeVine, Science, 285, 1224, 1999
  • 15. M.G. Furfaro, S. Gaudenzi, C. Iliescu, A. Marcelli, M. Tobin, A. Congiu Castellano, Infrared Study of Cells Doped with Heavy Metals, contribution III-119 at the INFM - Meeting 2001 (June 18-22, Roma), unpublished
  • 16. M. Diem, S. Boydston-White, L. Chiriboga, Appl. Spectrosc., 53, 148A, 1999
  • 17. B. Rigas, S. Morgello, I.S. Goldman, P.T.T. Wong, Proc. Natl. Acad. Sci. USA, 87, 8140, 1990
  • 18. D.C. Malins, N.L. Polissar, K. Nishikida, E.H. Holmes, H.S. Gardner, S.J. Gunselman, Cancer, 75, 504, 1995
  • 19. H. Fabian, M. Jackson, L. Murphy, P.H. Watson, I. Fichtner, H.H. Mantsch, Biospectroscopy, 1, 37, 1995
  • 20. N. Jamin, P. Dumas, J. Moncuit, W.H. Fridman, J.L. Teillaud, G.L. Carr, G.P. Williams, Proc. Natl. Acad. Sci. USA, 95, 4837, 1998
  • 21. Hoi-Ying, N. Holman, R. Goth-Goldstein, M.C. Martin, M.L. Russel, W.R. McKinney, Environ. Sci. Technol., 34, 2513, 2000
  • 22. W.R. Taylor, A.C.W. May, N.P. Brown, A. Aszodi, Rep. Prog. Phys., 64, 517, 2001
  • 23. A. Troullier, D. Reinstadler, Y. Dupont, D. Naumann, V. Forge, Nat. Struct. Biol., 7, 78, 2000
  • 24. W.E. Surewicz, H.H. Mantsch, D. Chapman, Biochemistry, 32, 389, 1993
  • 25. C. Iliescu, A. Marcelli, private communication
  • 26. Biomedical Spectroscopy: Vibrational Spectroscopy and Other Novel Techniques, Eds. A. Mahadevan-Jansen, G.J. Puppels, Proc. SPIE, 3918, 2000
  • 27. D.L. Wetzel, S.M. LeVine, Spectrosc., 8, 40, 1993
  • 28. L.-P. Choo, D.L. Wetzel, W.C. Halliday, M. Jackson, S.M. LeVine, H.H. Mantsch, Biophysics J., 71, 1672, 1996
  • 29. L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, Cell. Mol. Biol., 44, 219, 1998
  • 30. M. Romeo, F. Burden, M. Quinn, B. Wood, D. McNaughton, Cell. Mol. Biol., 44, 179, 1998
  • 31. R.A. Meyers, Encyclopedia of Analytical Chemistry: Instrumentation and Application, Wiley, New York 2000, p. 4344
  • 32. A. Bittner, H.M. Heise, AIP Conf. Proc., 430, 278, 1998
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv100n522kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.